MW 40x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010068
GTIN: 5906301810674
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
30 mm
Weight
282.74 g
Magnetization Direction
→ diametrical
Load capacity
66.35 kg / 650.67 N
Magnetic Induction
515.71 mT
Coating
[NiCuNi] nickel
104.80 ZŁ with VAT / pcs + price for transport
85.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us
+48 888 99 98 98
or drop us a message via
request form
through our site.
Weight along with shape of magnets can be tested with our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 40x30 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from external magnetic fields,
- Because of the brilliant layer of gold, the component looks high-end,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- The ability for custom shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Wide application in modern technologies – they are used in computer drives, rotating machines, clinical machines along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Health risk due to small fragments may arise, when consumed by mistake, which is important in the health of young users. Moreover, small elements from these products can disrupt scanning once in the system,
- Due to the price of neodymium, their cost is considerably higher,
Detachment force of the magnet in optimal conditions – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Magnet lifting force in use – key factors
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets are especially fragile, which leads to shattering.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the strongest magnets ever created, and their strength can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Keep neodymium magnets far from children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can demagnetize at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.