e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to buy very strong magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in challenging weather conditions, including during rain and snow see more...

magnets with holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or searching for space rocks from gold read...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product on order

MW 40x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010068

GTIN: 5906301810674

5

Diameter Ø [±0,1 mm]

40 mm

Height [±0,1 mm]

30 mm

Weight

282.74 g

Magnetization Direction

→ diametrical

Load capacity

66.35 kg / 650.67 N

Magnetic Induction

515.71 mT

Coating

[NiCuNi] nickel

104.80 with VAT / pcs + price for transport

85.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
85.20 ZŁ
104.80 ZŁ
price from 10 pcs
80.09 ZŁ
98.51 ZŁ
price from 30 pcs
74.98 ZŁ
92.22 ZŁ

Can't decide what to choose?

Call us +48 22 499 98 98 or send us a note using contact form the contact section.
Specifications along with form of magnetic components can be checked using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

MW 40x30 / N38 - cylindrical magnet

Specification/characteristics MW 40x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010068
GTIN
5906301810674
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
40 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
282.74 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
66.35 kg / 650.67 N
Magnetic Induction ~ ?
515.71 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 40x30 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional iron magnets. Because of their strength, they are frequently employed in devices that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 40x30 / N38 with a magnetic force 66.35 kg has a weight of only 282.74 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin and other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet with classification N50 and N52 is a powerful and strong magnetic product in the form of a cylinder, featuring strong holding power and universal applicability. Very good price, fast shipping, resistance and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They have stable power, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by external magnetic fields effectively,
  • By applying a bright layer of silver, the element gains a clean look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they serve a purpose in hard drives, electric drives, medical equipment along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which allows for use in miniature devices

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is important in the family environments. Moreover, miniature parts from these magnets have the potential to complicate medical imaging if inside the body,
  • Due to expensive raw materials, their cost is above average,

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given pulling force of the magnet corresponds to the maximum force, assessed in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them extremely firmly.

Neodymium magnetic are characterized by their fragility, which can cause them to become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98