MW 29.9x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010052
GTIN: 5906301810513
Diameter Ø [±0,1 mm]
29.9 mm
Height [±0,1 mm]
10 mm
Weight
52.66 g
Magnetization Direction
→ diametrical
Load capacity
16.53 kg / 162.1 N
Magnetic Induction
344.60 mT
Coating
[NiCuNi] nickel
24.60 ZŁ with VAT / pcs + price for transport
20.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 22 499 98 98
or send us a note using
contact form
the contact form page.
Specifications and form of magnetic components can be analyzed using our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 29.9x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
- They show strong resistance to demagnetization from external magnetic fields,
- In other words, due to the metallic nickel coating, the magnet obtains an aesthetic appearance,
- The outer field strength of the magnet shows elevated magnetic properties,
- With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Significant impact in cutting-edge sectors – they are used in hard drives, electric drives, healthcare devices or even high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is crucial in the family environments. It should also be noted that minuscule fragments from these assemblies might interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given pulling force of the magnet means the maximum force, measured in the best circumstances, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- at room temperature
Practical lifting capacity: influencing factors
The lifting capacity of a magnet depends on in practice key elements, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.
Safety Precautions
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Magnets made of neodymium are especially delicate, resulting in damage.
Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or crumble with careless connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Warning!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.