MW 21.9x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010045
GTIN: 5906301810445
Diameter Ø [±0,1 mm]
21.9 mm
Height [±0,1 mm]
10 mm
Weight
28.25 g
Magnetization Direction
→ diametrical
Load capacity
12.11 kg / 118.76 N
Magnetic Induction
417.89 mT
Coating
[NiCuNi] nickel
15.50 ZŁ with VAT / pcs + price for transport
12.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us now
+48 888 99 98 98
if you prefer contact us via
our online form
the contact section.
Force as well as structure of magnets can be reviewed using our
force calculator.
Order by 14:00 and we’ll ship today!
MW 21.9x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as nickel, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
- They remain magnetized despite exposure to magnetic noise,
- Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for precise shaping or adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Wide application in advanced technical fields – they find application in data storage devices, rotating machines, healthcare devices as well as technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
- Possible threat due to small fragments may arise, when consumed by mistake, which is crucial in the family environments. Furthermore, small elements from these assemblies might complicate medical imaging once in the system,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given strength of the magnet corresponds to the optimal strength, calculated in ideal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate lowers the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Neodymium magnets bounce and touch each other mutually within a radius of several to around 10 cm from each other.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets far from children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are characterized by their fragility, which can cause them to crumble.
Magnets made of neodymium are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Warning!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.