tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are perfect for use in difficult, demanding weather, including during snow and rain see...

magnetic holders

Holders with magnets can be used to enhance production processes, underwater discoveries, or finding meteors made of ore check...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product on order

MW 21.9x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010045

GTIN: 5906301810445

0

Diameter Ø [±0,1 mm]

21.9 mm

Height [±0,1 mm]

10 mm

Weight

28.25 g

Magnetization Direction

→ diametrical

Load capacity

12.11 kg / 118.76 N

Magnetic Induction

417.89 mT

Coating

[NiCuNi] nickel

15.50 with VAT / pcs + price for transport

12.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.60 ZŁ
15.50 ZŁ
price from 50 pcs
11.84 ZŁ
14.57 ZŁ
price from 200 pcs
11.09 ZŁ
13.64 ZŁ

Looking for a better price?

Pick up the phone and ask +48 888 99 98 98 alternatively send us a note by means of contact form our website.
Force and shape of neodymium magnets can be calculated on our power calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 21.9x10 / N38 - cylindrical magnet

Specification/characteristics MW 21.9x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010045
GTIN
5906301810445
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
21.9 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
28.25 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
12.11 kg / 118.76 N
Magnetic Induction ~ ?
417.89 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 21.9x10 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently used in products that need strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 21.9x10 / N38 with a magnetic lifting capacity of 12.11 kg weighs only 28.25 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin or other materials, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet with classification N52 and N50 is a strong and powerful metal object designed as a cylinder, that provides high force and universal application. Competitive price, 24h delivery, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly ten years – the loss is just ~1% (based on simulations),
  • They are very resistant to demagnetization caused by external field interference,
  • By applying a reflective layer of gold, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for tailored forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Significant impact in cutting-edge sectors – they find application in hard drives, electromechanical systems, clinical machines along with high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall resistance,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment – during outdoor use, we recommend using waterproof magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, tiny components from these magnets may complicate medical imaging if inside the body,
  • Due to expensive raw materials, their cost is considerably higher,

Magnetic strength at its maximum – what affects it?

The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Caution with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnetic are particularly delicate, which leads to their breakage.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Safety rules!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98