e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable steel enclosure are ideally suited for use in difficult climate conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be used to improve production, exploring underwater areas, or locating meteorites from gold more...

Order is always shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 21.9x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010045

GTIN: 5906301810445

0

Diameter Ø [±0,1 mm]

21.9 mm

Height [±0,1 mm]

10 mm

Weight

28.25 g

Magnetization Direction

→ diametrical

Load capacity

12.11 kg / 118.76 N

Magnetic Induction

417.89 mT

Coating

[NiCuNi] nickel

15.50 with VAT / pcs + price for transport

12.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.60 ZŁ
15.50 ZŁ
price from 48 pcs
11.84 ZŁ
14.57 ZŁ
price from 199 pcs
11.09 ZŁ
13.64 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 or get in touch via inquiry form through our site.
Strength as well as form of a neodymium magnet can be checked using our force calculator.

Order by 14:00 and we’ll ship today!

MW 21.9x10 / N38 - cylindrical magnet

Specification/characteristics MW 21.9x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010045
GTIN
5906301810445
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
21.9 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
28.25 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
12.11 kg / 118.76 N
Magnetic Induction ~ ?
417.89 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 21.9x10 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently employed in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 21.9x10 / N38 and a magnetic strength 12.11 kg weighs only 28.25 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the latest information and offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very useful in many applications, they can also pose certain dangers. Due to their significant magnetic power, they can attract metallic objects with great force, which can lead to damaging skin or other materials, especially be careful with fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet in classes N52 and N50 is a strong and extremely powerful magnetic piece with the shape of a cylinder, providing strong holding power and universal applicability. Good price, 24h delivery, ruggedness and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional field intensity, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for almost 10 years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by surrounding magnetic influence very well,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their application range,
  • Wide application in advanced technical fields – they are utilized in hard drives, electromechanical systems, clinical machines as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall robustness,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is crucial in the health of young users. It should also be noted that minuscule fragments from these products can interfere with diagnostics after being swallowed,
  • Due to the price of neodymium, their cost is considerably higher,

Exercise Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are especially delicate, which leads to shattering.

Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets will bounce and clash together within a radius of several to almost 10 cm from each other.

 Maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Warning!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98