tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in difficult climate conditions, including during snow and rain more...

magnets with holders

Holders with magnets can be used to facilitate production, exploring underwater areas, or searching for meteors from gold more...

Enjoy delivery of your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 19x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010038

GTIN: 5906301810377

0

Diameter Ø [±0,1 mm]

19 mm

Height [±0,1 mm]

4 mm

Weight

8.51 g

Magnetization Direction

↑ axial

Load capacity

4.2 kg / 41.19 N

Magnetic Induction

240.51 mT

Coating

[Zn] zinc

4.80 with VAT / pcs + price for transport

3.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.90 ZŁ
4.80 ZŁ
price from 154 pcs
3.67 ZŁ
4.51 ZŁ
price from 642 pcs
3.43 ZŁ
4.22 ZŁ

Do you have questions?

Call us +48 888 99 98 98 or contact us by means of inquiry form the contact form page.
Weight as well as appearance of magnetic components can be analyzed on our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 19x4 / N38 - cylindrical magnet

Specification/characteristics MW 19x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010038
GTIN
5906301810377
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
19 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
8.51 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.2 kg / 41.19 N
Magnetic Induction ~ ?
240.51 mT
Coating
[Zn] zinc
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 19x4 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their strength, they are often used in devices that need strong adhesion. The standard temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 19x4 / N38 with a magnetic lifting capacity of 4.2 kg has a weight of only 8.51 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet of class N52 and N50 is a powerful and strong metal object designed as a cylinder, featuring high force and broad usability. Competitive price, fast shipping, durability and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (according to literature),
  • They protect against demagnetization induced by external magnetic fields remarkably well,
  • In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for tailored forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Wide application in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, diagnostic apparatus and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is notable in the health of young users. It should also be noted that miniature parts from these products might disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Handle with Care: Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets made of neodymium are fragile as well as can easily crack as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will jump and clash together within a distance of several to almost 10 cm from each other.

 It is essential to keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Warning!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98