MW 18x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010037
GTIN/EAN: 5906301810360
Diameter Ø
18 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
2.86 g
Magnetization Direction
↑ axial
Load capacity
0.95 kg / 9.34 N
Magnetic Induction
101.91 mT / 1019 Gs
Coating
[NiCuNi] Nickel
1.353 ZŁ with VAT / pcs + price for transport
1.100 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
or let us know using
form
the contact section.
Lifting power and shape of a magnet can be checked with our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
Technical details - MW 18x1.5 / N38 - cylindrical magnet
Specification / characteristics - MW 18x1.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010037 |
| GTIN/EAN | 5906301810360 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 18 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 2.86 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.95 kg / 9.34 N |
| Magnetic Induction ~ ? | 101.91 mT / 1019 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the magnet - technical parameters
The following data constitute the result of a physical simulation. Results were calculated on algorithms for the material Nd2Fe14B. Real-world performance may differ. Use these data as a reference point when designing systems.
Table 1: Static force (force vs distance) - characteristics
MW 18x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
weak grip |
| 1 mm |
975 Gs
97.5 mT
|
0.87 kg / 1.92 lbs
869.2 g / 8.5 N
|
weak grip |
| 2 mm |
902 Gs
90.2 mT
|
0.74 kg / 1.64 lbs
744.7 g / 7.3 N
|
weak grip |
| 3 mm |
812 Gs
81.2 mT
|
0.60 kg / 1.33 lbs
603.4 g / 5.9 N
|
weak grip |
| 5 mm |
619 Gs
61.9 mT
|
0.35 kg / 0.77 lbs
350.6 g / 3.4 N
|
weak grip |
| 10 mm |
274 Gs
27.4 mT
|
0.07 kg / 0.15 lbs
68.7 g / 0.7 N
|
weak grip |
| 15 mm |
126 Gs
12.6 mT
|
0.01 kg / 0.03 lbs
14.6 g / 0.1 N
|
weak grip |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
weak grip |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
weak grip |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage hold (wall)
MW 18x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 18x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.29 kg / 0.63 lbs
285.0 g / 2.8 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 18x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| 1 mm |
|
0.24 kg / 0.52 lbs
237.5 g / 2.3 N
|
| 2 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 3 mm |
|
0.71 kg / 1.57 lbs
712.5 g / 7.0 N
|
| 5 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 10 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 11 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 12 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Table 5: Thermal resistance (material behavior) - resistance threshold
MW 18x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
OK |
| 40 °C | -2.2% |
0.93 kg / 2.05 lbs
929.1 g / 9.1 N
|
OK |
| 60 °C | -4.4% |
0.91 kg / 2.00 lbs
908.2 g / 8.9 N
|
|
| 80 °C | -6.6% |
0.89 kg / 1.96 lbs
887.3 g / 8.7 N
|
|
| 100 °C | -28.8% |
0.68 kg / 1.49 lbs
676.4 g / 6.6 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 18x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.63 kg / 3.59 lbs
1 960 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
N/A |
| 1 mm |
1.57 kg / 3.47 lbs
2 002 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 2 mm |
1.49 kg / 3.29 lbs
1 949 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 3 mm |
1.39 kg / 3.06 lbs
1 883 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 5 mm |
1.16 kg / 2.55 lbs
1 717 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 10 mm |
0.60 kg / 1.33 lbs
1 238 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 20 mm |
0.12 kg / 0.26 lbs
548 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MW 18x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (cracking risk) - warning
MW 18x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
19.19 km/h
(5.33 m/s)
|
0.04 J | |
| 30 mm |
31.85 km/h
(8.85 m/s)
|
0.11 J | |
| 50 mm |
41.10 km/h
(11.42 m/s)
|
0.19 J | |
| 100 mm |
58.12 km/h
(16.15 m/s)
|
0.37 J |
Table 9: Anti-corrosion coating durability
MW 18x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 18x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 519 Mx | 35.2 µWb |
| Pc Coefficient | 0.13 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 18x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.95 kg | Standard |
| Water (riverbed) |
1.09 kg
(+0.14 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet holds just ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Power loss vs temp
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.13
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Advantages and disadvantages of rare earth magnets.
Advantages
- Their magnetic field is durable, and after around 10 years it decreases only by ~1% (according to research),
- Neodymium magnets are extremely resistant to loss of magnetic properties caused by external magnetic fields,
- A magnet with a smooth nickel surface has better aesthetics,
- They feature high magnetic induction at the operating surface, making them more effective,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of exact machining and adapting to precise requirements,
- Universal use in advanced technology sectors – they find application in mass storage devices, electromotive mechanisms, precision medical tools, and technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer high power in compact dimensions, which allows their use in miniature devices
Cons
- To avoid cracks upon strong impacts, we suggest using special steel housings. Such a solution secures the magnet and simultaneously increases its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in force. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material immune to moisture, when using outdoors
- We suggest a housing - magnetic holder, due to difficulties in creating nuts inside the magnet and complex forms.
- Potential hazard to health – tiny shards of magnets can be dangerous, if swallowed, which is particularly important in the aspect of protecting the youngest. Additionally, small components of these products can complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Maximum lifting force for a neodymium magnet – what contributes to it?
- with the use of a sheet made of low-carbon steel, guaranteeing maximum field concentration
- whose thickness reaches at least 10 mm
- with an ideally smooth touching surface
- without the slightest insulating layer between the magnet and steel
- during detachment in a direction perpendicular to the plane
- in temp. approx. 20°C
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the plate), as even a microscopic clearance (e.g. 0.5 mm) results in a decrease in force by up to 50% (this also applies to paint, rust or debris).
- Force direction – catalog parameter refers to detachment vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of nominal force).
- Wall thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of generating force.
- Metal type – different alloys reacts the same. High carbon content weaken the interaction with the magnet.
- Surface quality – the smoother and more polished the surface, the larger the contact zone and stronger the hold. Unevenness creates an air distance.
- Temperature – temperature increase causes a temporary drop of force. It is worth remembering the thermal limit for a given model.
Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as 75%. In addition, even a slight gap between the magnet’s surface and the plate decreases the load capacity.
Safety rules for work with NdFeB magnets
Permanent damage
Avoid heat. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, ask us about HT versions (H, SH, UH).
Skin irritation risks
Studies show that the nickel plating (the usual finish) is a strong allergen. If you have an allergy, refrain from direct skin contact or choose coated magnets.
Choking Hazard
Absolutely keep magnets away from children. Choking hazard is high, and the consequences of magnets connecting inside the body are life-threatening.
Pinching danger
Large magnets can break fingers instantly. Do not place your hand betwixt two strong magnets.
Life threat
Warning for patients: Powerful magnets disrupt medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
Flammability
Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this may cause fire.
Caution required
Before starting, check safety instructions. Uncontrolled attraction can break the magnet or hurt your hand. Be predictive.
Safe distance
Equipment safety: Neodymium magnets can ruin payment cards and sensitive devices (heart implants, medical aids, timepieces).
Threat to navigation
GPS units and smartphones are highly susceptible to magnetism. Direct contact with a powerful NdFeB magnet can permanently damage the internal compass in your phone.
Fragile material
Watch out for shards. Magnets can explode upon violent connection, ejecting shards into the air. Eye protection is mandatory.
