MW 100x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010001
GTIN: 5906301810018
Diameter Ø [±0,1 mm]
100 mm
Height [±0,1 mm]
10 mm
Weight
589.05 g
Magnetization Direction
↑ axial
Load capacity
55.29 kg / 542.21 N
Magnetic Induction
121.59 mT
Coating
[NiCuNi] nickel
368.50 ZŁ with VAT / pcs + price for transport
299.59 ZŁ net + 23% VAT / pcs
289.59 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Do you have questions?
Give us a call
+48 888 99 98 98
or get in touch by means of
inquiry form
the contact page.
Lifting power and appearance of magnetic components can be reviewed with our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
MW 100x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their even during around 10 years – the loss of lifting capacity is only ~1% (according to tests),
- Their ability to resist magnetic interference from external fields is impressive,
- Thanks to the shiny finish and nickel coating, they have an elegant appearance,
- Magnetic induction on the surface of these magnets is very strong,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Significant impact in new technology industries – they are utilized in data storage devices, electric drives, healthcare devices and high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall strength,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment. For outdoor use, we recommend using sealed magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. Moreover, miniature parts from these products might disrupt scanning if inside the body,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Precautions
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Maintain neodymium magnets away from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets will bounce and also contact together within a distance of several to around 10 cm from each other.
Neodymium magnets are highly susceptible to damage, resulting in their cracking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.