tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight enclosure are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow check...

magnets with holders

Holders with magnets can be applied to facilitate production, underwater exploration, or searching for meteors from gold more...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product on order

MW 100x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010001

GTIN: 5906301810018

5

Diameter Ø [±0,1 mm]

100 mm

Height [±0,1 mm]

10 mm

Weight

589.05 g

Magnetization Direction

↑ axial

Load capacity

55.29 kg / 542.21 N

Magnetic Induction

121.59 mT

Coating

[NiCuNi] nickel

368.50 with VAT / pcs + price for transport

299.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
299.59 ZŁ
368.50 ZŁ
price from 5 pcs
281.61 ZŁ
346.39 ZŁ
price from 10 pcs
263.64 ZŁ
324.28 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 or contact us by means of form through our site.
Weight as well as form of magnets can be calculated on our online calculation tool.

Same-day shipping for orders placed before 14:00.

MW 100x10 / N38 - cylindrical magnet

Specification/characteristics MW 100x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010001
GTIN
5906301810018
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
100 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
589.05 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
55.29 kg / 542.21 N
Magnetic Induction ~ ?
121.59 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 100x10 / N38 are magnets created of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their power, they are frequently employed in devices that require powerful holding. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 100x10 / N38 and a magnetic force 55.29 kg has a weight of only 589.05 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the latest information as well as offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are useful in various applications, they can also pose certain risk. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other materials, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as nickel, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet in classes N50 and N52 is a powerful and strong metal object in the form of a cylinder, featuring strong holding power and universal applicability. Attractive price, availability, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by ambient electromagnetic environments remarkably well,
  • Thanks to the glossy finish and nickel coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Significant impact in new technology industries – they find application in hard drives, rotating machines, healthcare devices as well as sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is significant in the family environments. Additionally, tiny components from these assemblies may complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given pulling force of the magnet represents the maximum force, calculated in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Precautions

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and clash mutually within a distance of several to around 10 cm from each other.

Magnets made of neodymium are especially delicate, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98