e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in challenging weather conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or searching for space rocks made of metal more...

We promise to ship your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet

lamellar magnet

Catalog no 020159

GTIN: 5906301811657

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

4 mm

Weight

24 g

Magnetization Direction

↑ axial

Load capacity

8.93 kg / 87.57 N

Magnetic Induction

168.28 mT

Coating

[NiCuNi] nickel

17.96 with VAT / pcs + price for transport

14.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.60 ZŁ
17.96 ZŁ
price from 50 pcs
13.72 ZŁ
16.88 ZŁ
price from 180 pcs
12.85 ZŁ
15.80 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 888 99 98 98 if you prefer contact us through request form the contact page.
Specifications and shape of neodymium magnets can be tested on our force calculator.

Same-day shipping for orders placed before 14:00.

MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet

Specification/characteristics MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet
properties
values
Cat. no.
020159
GTIN
5906301811657
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
24 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.93 kg / 87.57 N
Magnetic Induction ~ ?
168.28 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 40x20x4x2[7/3.5] / N38 are magnets made from neodymium in a flat form. They are known for their exceptionally potent magnetic properties, which outshine ordinary ferrite magnets.
Thanks to their high strength, flat magnets are regularly used in products that need exceptional adhesion.
Most common temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value grows.
Additionally, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their durability.
The magnet with the designation MPL 40x20x4x2[7/3.5] / N38 i.e. a magnetic force 8.93 kg with a weight of only 24 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which lead to them being the best choice for various uses:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often used in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape makes mounting, especially when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in arranging them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In some cases, other shapes, like cylindrical or spherical, are a better choice.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive forces, which affect materials containing cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastics, glass, wooden materials and precious stones. Additionally, magnets do not affect certain metals, such as copper, aluminum, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
A neodymium plate magnet in classes N52 and N50 is a powerful and highly strong metal object designed as a plate, that offers strong holding power and versatile application. Very good price, availability, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They do not lose their even over nearly ten years – the reduction of power is only ~1% (according to tests),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • By applying a shiny layer of silver, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
  • Significant impact in new technology industries – they are used in HDDs, electric drives, diagnostic apparatus along with other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Safety concern related to magnet particles may arise, when consumed by mistake, which is important in the health of young users. Additionally, minuscule fragments from these magnets might complicate medical imaging if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Caution with Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will crack or alternatively crumble with careless connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are fragile and can easily crack and get damaged.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

 It is important to maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Pay attention!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98