e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All "magnets" in our store are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to purchase powerful magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in variable and difficult weather, including during snow and rain check...

magnetic holders

Magnetic holders can be applied to improve production processes, underwater exploration, or locating space rocks made of metal more information...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet

lamellar magnet

Catalog no 020159

GTIN: 5906301811657

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

4 mm

Weight

24 g

Magnetization Direction

↑ axial

Load capacity

8.93 kg / 87.57 N

Magnetic Induction

168.28 mT

Coating

[NiCuNi] nickel

17.96 with VAT / pcs + price for transport

14.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.60 ZŁ
17.96 ZŁ
price from 42 pcs
13.72 ZŁ
16.88 ZŁ
price from 151 pcs
12.85 ZŁ
15.80 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet

Specification/characteristics MPL 40x20x4x2[7/3.5] / N38 - lamellar magnet
properties
values
Cat. no.
020159
GTIN
5906301811657
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
24 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.93 kg / 87.57 N
Magnetic Induction ~ ?
168.28 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 40x20x4x2[7/3.5] / N38 are magnets created from neodymium in a flat form. They are valued for their extremely powerful magnetic properties, which outshine ordinary iron magnets.
Due to their power, flat magnets are commonly applied in structures that need very strong attraction.
The standard temperature resistance of flat magnets is 80°C, but with larger dimensions, this value can increase.
Moreover, flat magnets commonly have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their corrosion resistance.
The magnet with the designation MPL 40x20x4x2[7/3.5] / N38 i.e. a lifting capacity of 8.93 kg with a weight of a mere 24 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which cause them being an ideal choice for various uses:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often used in many devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, especially when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Attracted by magnets are objects made of ferromagnetic materials, such as iron, objects containing nickel, cobalt or alloys of metals with magnetic properties. Additionally, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which attract materials containing nickel or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass, wooden materials or most gemstones. Moreover, magnets do not affect most metals, such as copper items, aluminum materials, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Wide application in advanced technologically fields – are used in HDD drives, electric motors, medical apparatus and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard to health from tiny fragments of magnets pose a threat, if swallowed, which is crucial in the context of child safety. It's also worth noting that tiny parts of these products can hinder the diagnostic process in case of swallowing.

Precautions with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are incredibly fragile, they easily fall apart and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and also touch each other mutually within a distance of several to almost 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98