tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are perfect for use in challenging weather, including snow and rain more information...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or locating meteorites made of metal see...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 10x4x1.5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020113

GTIN: 5906301811190

5

length [±0,1 mm]

10 mm

Width [±0,1 mm]

4 mm

Height [±0,1 mm]

1.5 mm

Weight

0.45 g

Magnetization Direction

↑ axial

Load capacity

0.75 kg / 7.35 N

Magnetic Induction

274.96 mT

Coating

[NiCuNi] nickel

0.25 with VAT / pcs + price for transport

0.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.20 ZŁ
0.25 ZŁ
price from 600 pcs
0.19 ZŁ
0.23 ZŁ
price from 2200 pcs
0.18 ZŁ
0.22 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 10x4x1.5 / N38 - lamellar magnet

Specification/characteristics MPL 10x4x1.5 / N38 - lamellar magnet
properties
values
Cat. no.
020113
GTIN
5906301811190
Production/Distribution
Dhit sp. z o.o.
Country of origin
Polska / Chiny / Niemcy
Customs code
85059029
length
10 mm [±0,1 mm]
Width
4 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.45 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.75 kg / 7.35 N
Magnetic Induction ~ ?
274.96 mT
Coating
[NiCuNi] nickel
tolerancja wykonania
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 10x4x1.5 / N38 are magnets created from neodymium in a rectangular form. They are appreciated for their exceptionally potent magnetic properties, which surpass standard ferrite magnets.
Thanks to their high strength, flat magnets are regularly used in products that require strong holding power.
Most common temperature resistance of flat magnets is 80°C, but depending on the dimensions, this value can increase.
Moreover, flat magnets often have different coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their corrosion resistance.
The magnet with the designation MPL 10x4x1.5 / N38 i.e. a magnetic strength ${capacity} kg with a weight of a mere ${weight} grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which lead to them being the best choice for various uses:
Contact surface: Thanks to their flat shape, flat magnets ensure a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often utilized in many devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape simplifies mounting, especially when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators a lot of flexibility in arranging them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, minimizing the risk of shifting or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, are more appropriate.
Magnets attract ferromagnetic materials, such as iron, nickel, materials with cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive interactions, which affect materials containing iron or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials and most gemstones. Additionally, magnets do not affect most metals, such as copper, aluminum materials, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets

Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:

  • Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
  • High coercivity: They are resistant to demagnetization by external magnetic fields.
  • Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
  • Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
  • Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
  • Longevity: With proper use, they retain their magnetic properties for many years.
  • Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.

Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:

  • Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
  • Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
  • Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
  • Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is essential to maintain neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Magnets made of neodymium are particularly fragile, resulting in their breakage.

Neodymium magnets are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98