e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid enclosure are perfect for use in difficult weather conditions, including in the rain and snow more information...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater exploration, or searching for space rocks from gold more information...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 32x16x3 / N38 - ring magnet

ring magnet

Catalog no 030198

GTIN: 5906301812159

5

Diameter [±0,1 mm]

32 mm

internal diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

3 mm

Weight

11.31 g

Magnetization Direction

↑ axial

Load capacity

2.74 kg / 26.87 N

Magnetic Induction

103.36 mT

Coating

[NiCuNi] nickel

5.24 with VAT / pcs + price for transport

4.26 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.26 ZŁ
5.24 ZŁ
price from 150 pcs
4.00 ZŁ
4.93 ZŁ
price from 600 pcs
3.75 ZŁ
4.61 ZŁ

Do you have trouble choosing?

Call us +48 22 499 98 98 alternatively contact us using contact form the contact section.
Force along with form of neodymium magnets can be checked with our our magnetic calculator.

Order by 14:00 and we’ll ship today!

MP 32x16x3 / N38 - ring magnet

Specification/characteristics MP 32x16x3 / N38 - ring magnet
properties
values
Cat. no.
030198
GTIN
5906301812159
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
32 mm [±0,1 mm]
internal diameter Ø
16 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
11.31 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.74 kg / 26.87 N
Magnetic Induction ~ ?
103.36 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, MP 32x16x3 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 2.74 kg, which can be described as lifting capacity, they are key in applications that require strong magnetism in a compact space. Usage of MP 32x16x3 / N38 magnets include electric motors, generating systems, audio systems, and numerous other devices that use magnets for producing motion or energy storage. Despite their significant strength, they have a comparatively low weight of 11.31 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Ring magnets stand out high magnetic strength, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for effective use in devices such as motors or speakers. Additionally, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet in classes N50 and N52 is a strong and powerful metallic component with the shape of a ring, providing strong holding power and universal applicability. Good price, 24h delivery, stability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (based on calculations),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • By applying a shiny layer of silver, the element gains a sleek look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Wide application in modern technologies – they serve a purpose in computer drives, electric motors, clinical machines or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall robustness,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Possible threat related to magnet particles may arise, if ingested accidentally, which is crucial in the family environments. It should also be noted that miniature parts from these assemblies can hinder health screening after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum holding power of the magnet – what it depends on?

The given pulling force of the magnet means the maximum force, measured in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Practical aspects of lifting capacity – factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Precautions

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are delicate and can easily break as well as shatter.

Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Pay attention!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98