e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for searching F300 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight and durable steel enclosure are excellent for use in difficult, demanding weather, including during rain and snow more information...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater exploration, or locating meteors made of metal check...

Order is always shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 25x5x27 / N38 - ring magnet

ring magnet

Catalog no 030192

GTIN: 5906301812098

5

Diameter [±0,1 mm]

25 mm

internal diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

27 mm

Weight

127.23 g

Magnetization Direction

↑ axial

Load capacity

7.7 kg / 75.51 N

Magnetic Induction

53.48 mT

Coating

[NiCuNi] nickel

47.18 with VAT / pcs + price for transport

38.36 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
38.36 ZŁ
47.18 ZŁ
price from 20 pcs
36.06 ZŁ
44.35 ZŁ
price from 70 pcs
33.76 ZŁ
41.52 ZŁ

Do you have questions?

Contact us by phone +48 22 499 98 98 or let us know using our online form our website.
Parameters along with structure of a magnet can be reviewed on our force calculator.

Orders submitted before 14:00 will be dispatched today!

MP 25x5x27 / N38 - ring magnet

Specification/characteristics MP 25x5x27 / N38 - ring magnet
properties
values
Cat. no.
030192
GTIN
5906301812098
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
25 mm [±0,1 mm]
internal diameter Ø
5 mm [±0,1 mm]
Height
27 mm [±0,1 mm]
Weight
127.23 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.7 kg / 75.51 N
Magnetic Induction ~ ?
53.48 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, neodymium element MP 25x5x27 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 7.7 kg, which can be described as lifting capacity, they are very helpful in applications that require high magnetic power in a relatively small area. Usage of MP 25x5x27 / N38 magnets include electric motors, generators, sound devices, and several other devices that use magnets for generating motion or storing energy. Despite their significant strength, they have a comparatively low weight of 127.23 grams, which makes them more convenient to use compared to heavier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Their uniqueness comes from extraordinary pulling power, ability to work in extreme conditions, precise control of the magnetic field. Their unique ring form allows for effective use in devices such as motors or speakers. Additionally, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet N52 and N50 is a powerful and highly strong metallic component shaped like a ring, providing high force and universal applicability. Competitive price, availability, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong holding force, neodymium magnets have these key benefits:

  • They do not lose their even during nearly ten years – the loss of lifting capacity is only ~1% (based on measurements),
  • They protect against demagnetization induced by external electromagnetic environments very well,
  • Because of the reflective layer of nickel, the component looks aesthetically refined,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for custom shaping or adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Significant impact in modern technologies – they are utilized in data storage devices, electromechanical systems, clinical machines and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in miniature devices

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is significant in the context of child safety. Furthermore, minuscule fragments from these magnets might hinder health screening after being swallowed,
  • Due to a complex production process, their cost is above average,

Highest magnetic holding forcewhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, determined in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle Neodymium Magnets Carefully

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are delicate as well as can easily break and get damaged.

Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets jump and touch each other mutually within a radius of several to almost 10 cm from each other.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98