MP 25x13x4 / N38 - ring magnet
ring magnet
Catalog no 030190
GTIN/EAN: 5906301812074
Diameter
25 mm [±0,1 mm]
internal diameter Ø
13 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
10.74 g
Magnetization Direction
↑ axial
Load capacity
4.14 kg / 40.57 N
Magnetic Induction
188.92 mT / 1889 Gs
Coating
[NiCuNi] Nickel
6.77 ZŁ with VAT / pcs + price for transport
5.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
otherwise drop us a message through
request form
the contact section.
Force and appearance of a neodymium magnet can be calculated with our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical details - MP 25x13x4 / N38 - ring magnet
Specification / characteristics - MP 25x13x4 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030190 |
| GTIN/EAN | 5906301812074 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 25 mm [±0,1 mm] |
| internal diameter Ø | 13 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 10.74 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 4.14 kg / 40.57 N |
| Magnetic Induction ~ ? | 188.92 mT / 1889 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the product - data
Presented data represent the outcome of a physical analysis. Values are based on algorithms for the material Nd2Fe14B. Actual conditions might slightly deviate from the simulation results. Please consider these calculations as a reference point during assembly planning.
Table 1: Static pull force (force vs gap) - power drop
MP 25x13x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
warning |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 7.71 LBS
3497.4 g / 34.3 N
|
warning |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 6.42 LBS
2912.4 g / 28.6 N
|
warning |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 5.29 LBS
2398.5 g / 23.5 N
|
warning |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 3.50 LBS
1586.2 g / 15.6 N
|
weak grip |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 1.17 LBS
532.9 g / 5.2 N
|
weak grip |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 0.41 LBS
188.0 g / 1.8 N
|
weak grip |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 0.16 LBS
74.0 g / 0.7 N
|
weak grip |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.03 LBS
15.7 g / 0.2 N
|
weak grip |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.00 LBS
1.6 g / 0.0 N
|
weak grip |
Table 2: Vertical force (wall)
MP 25x13x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 1.83 LBS
828.0 g / 8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.54 LBS
700.0 g / 6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 1.28 LBS
582.0 g / 5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 1.06 LBS
480.0 g / 4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.70 LBS
318.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.23 LBS
106.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 LBS
38.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 LBS
14.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MP 25x13x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 2.74 LBS
1242.0 g / 12.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 1.83 LBS
828.0 g / 8.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 0.91 LBS
414.0 g / 4.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 4.56 LBS
2070.0 g / 20.3 N
|
Table 4: Material efficiency (substrate influence) - power losses
MP 25x13x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 0.91 LBS
414.0 g / 4.1 N
|
| 1 mm |
|
1.04 kg / 2.28 LBS
1035.0 g / 10.2 N
|
| 2 mm |
|
2.07 kg / 4.56 LBS
2070.0 g / 20.3 N
|
| 3 mm |
|
3.10 kg / 6.85 LBS
3105.0 g / 30.5 N
|
| 5 mm |
|
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
| 10 mm |
|
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
| 11 mm |
|
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
| 12 mm |
|
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MP 25x13x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 9.13 LBS
4140.0 g / 40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 8.93 LBS
4048.9 g / 39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 8.73 LBS
3957.8 g / 38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 8.52 LBS
3866.8 g / 37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 6.50 LBS
2947.7 g / 28.9 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MP 25x13x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
83.66 kg / 184.44 LBS
6 082 Gs
|
12.55 kg / 27.67 LBS
12549 g / 123.1 N
|
N/A |
| 1 mm |
77.09 kg / 169.95 LBS
11 091 Gs
|
11.56 kg / 25.49 LBS
11563 g / 113.4 N
|
69.38 kg / 152.95 LBS
~0 Gs
|
| 2 mm |
70.68 kg / 155.81 LBS
10 620 Gs
|
10.60 kg / 23.37 LBS
10601 g / 104.0 N
|
63.61 kg / 140.23 LBS
~0 Gs
|
| 3 mm |
64.59 kg / 142.40 LBS
10 153 Gs
|
9.69 kg / 21.36 LBS
9689 g / 95.0 N
|
58.13 kg / 128.16 LBS
~0 Gs
|
| 5 mm |
53.48 kg / 117.90 LBS
9 238 Gs
|
8.02 kg / 17.68 LBS
8022 g / 78.7 N
|
48.13 kg / 106.11 LBS
~0 Gs
|
| 10 mm |
32.05 kg / 70.66 LBS
7 152 Gs
|
4.81 kg / 10.60 LBS
4808 g / 47.2 N
|
28.85 kg / 63.60 LBS
~0 Gs
|
| 20 mm |
10.77 kg / 23.74 LBS
4 145 Gs
|
1.62 kg / 3.56 LBS
1615 g / 15.8 N
|
9.69 kg / 21.37 LBS
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 LBS
1 024 Gs
|
0.10 kg / 0.22 LBS
99 g / 1.0 N
|
0.59 kg / 1.30 LBS
~0 Gs
|
| 60 mm |
0.32 kg / 0.70 LBS
712 Gs
|
0.05 kg / 0.10 LBS
48 g / 0.5 N
|
0.29 kg / 0.63 LBS
~0 Gs
|
| 70 mm |
0.17 kg / 0.36 LBS
514 Gs
|
0.02 kg / 0.05 LBS
25 g / 0.2 N
|
0.15 kg / 0.33 LBS
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 LBS
383 Gs
|
0.01 kg / 0.03 LBS
14 g / 0.1 N
|
0.08 kg / 0.18 LBS
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 LBS
293 Gs
|
0.01 kg / 0.02 LBS
8 g / 0.1 N
|
0.05 kg / 0.11 LBS
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 LBS
230 Gs
|
0.00 kg / 0.01 LBS
5 g / 0.0 N
|
0.03 kg / 0.07 LBS
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MP 25x13x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 17.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 13.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 10.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 8.0 cm |
| Car key | 50 Gs (5.0 mT) | 7.5 cm |
| Payment card | 400 Gs (40.0 mT) | 3.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.5 cm |
Table 8: Impact energy (kinetic energy) - warning
MP 25x13x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
Table 9: Anti-corrosion coating durability
MP 25x13x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MP 25x13x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 24 861 Mx | 248.6 µWb |
| Pc Coefficient | 1.02 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MP 25x13x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 4.14 kg | Standard |
| Water (riverbed) |
4.74 kg
(+0.60 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet holds merely a fraction of its perpendicular strength.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) severely weakens the holding force.
3. Heat tolerance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.02
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Pros as well as cons of rare earth magnets.
Benefits
- They have unchanged lifting capacity, and over more than 10 years their performance decreases symbolically – ~1% (in testing),
- Neodymium magnets prove to be extremely resistant to loss of magnetic properties caused by external interference,
- Thanks to the reflective finish, the plating of nickel, gold-plated, or silver-plated gives an aesthetic appearance,
- The surface of neodymium magnets generates a unique magnetic field – this is a key feature,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to freedom in forming and the ability to adapt to complex applications,
- Wide application in modern industrial fields – they find application in magnetic memories, drive modules, medical equipment, as well as other advanced devices.
- Thanks to their power density, small magnets offer high operating force, with minimal size,
Limitations
- Brittleness is one of their disadvantages. Upon strong impact they can break. We advise keeping them in a steel housing, which not only secures them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which secure oxidation and corrosion.
- We suggest cover - magnetic mount, due to difficulties in producing nuts inside the magnet and complex shapes.
- Health risk related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which is particularly important in the aspect of protecting the youngest. Furthermore, small elements of these products can disrupt the diagnostic process medical in case of swallowing.
- Due to expensive raw materials, their price exceeds standard values,
Lifting parameters
Maximum lifting capacity of the magnet – what affects it?
- with the contact of a sheet made of low-carbon steel, guaranteeing full magnetic saturation
- possessing a thickness of min. 10 mm to avoid saturation
- characterized by even structure
- without any clearance between the magnet and steel
- under vertical application of breakaway force (90-degree angle)
- at room temperature
Practical lifting capacity: influencing factors
- Air gap (betwixt the magnet and the plate), because even a very small clearance (e.g. 0.5 mm) leads to a drastic drop in force by up to 50% (this also applies to paint, rust or dirt).
- Pull-off angle – note that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Base massiveness – too thin sheet does not close the flux, causing part of the power to be wasted to the other side.
- Material composition – not every steel reacts the same. Alloy additives worsen the attraction effect.
- Surface condition – smooth surfaces guarantee perfect abutment, which improves field saturation. Uneven metal reduce efficiency.
- Temperature – temperature increase results in weakening of induction. Check the thermal limit for a given model.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a small distance between the magnet’s surface and the plate reduces the holding force.
Precautions when working with NdFeB magnets
Magnets are brittle
Despite metallic appearance, neodymium is brittle and not impact-resistant. Avoid impacts, as the magnet may crumble into sharp, dangerous pieces.
Crushing risk
Danger of trauma: The pulling power is so great that it can result in blood blisters, pinching, and even bone fractures. Use thick gloves.
Demagnetization risk
Monitor thermal conditions. Exposing the magnet to high heat will permanently weaken its magnetic structure and pulling force.
Nickel coating and allergies
Nickel alert: The nickel-copper-nickel coating consists of nickel. If an allergic reaction occurs, cease working with magnets and wear gloves.
Handling rules
Exercise caution. Rare earth magnets act from a long distance and snap with massive power, often quicker than you can move away.
Threat to navigation
A strong magnetic field interferes with the functioning of magnetometers in phones and navigation systems. Keep magnets near a smartphone to prevent breaking the sensors.
Dust explosion hazard
Machining of NdFeB material carries a risk of fire hazard. Neodymium dust reacts violently with oxygen and is hard to extinguish.
Keep away from children
Neodymium magnets are not suitable for play. Swallowing several magnets can lead to them attracting across intestines, which poses a critical condition and requires urgent medical intervention.
Medical implants
Medical warning: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have medical devices.
Keep away from computers
Equipment safety: Strong magnets can damage data carriers and delicate electronics (heart implants, hearing aids, mechanical watches).
