MP 25x13x4 / N38 - ring magnet
ring magnet
Catalog no 030190
GTIN: 5906301812074
Diameter [±0,1 mm]
25 mm
internal diameter Ø [±0,1 mm]
13 mm
Height [±0,1 mm]
4 mm
Weight
11.31 g
Magnetization Direction
↑ axial
Load capacity
2.96 kg / 29.03 N
Magnetic Induction
135.80 mT
Coating
[NiCuNi] nickel
6.77 ZŁ with VAT / pcs + price for transport
5.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
otherwise get in touch through
contact form
the contact page.
Specifications as well as shape of a magnet can be verified on our
force calculator.
Same-day shipping for orders placed before 14:00.
MP 25x13x4 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They do not lose their power approximately ten years – the loss of power is only ~1% (according to tests),
- They are extremely resistant to demagnetization caused by external field interference,
- The use of a decorative silver surface provides a refined finish,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Important function in advanced technical fields – they are utilized in computer drives, rotating machines, medical equipment or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in compact constructions
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is important in the protection of children. Moreover, minuscule fragments from these devices may interfere with diagnostics if inside the body,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Highest magnetic holding force – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, assessed under optimal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Practical lifting capacity: influencing factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Handle with Care: Neodymium Magnets
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are highly fragile, they easily fall apart as well as can become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Warning!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.