Neodymium magnets: strength you're looking for

Looking for huge power in small size? Our range includes wide selection of various shapes and sizes. Best choice for home use, workshop and industrial tasks. Check our offer available immediately.

see price list and dimensions

Magnet fishing: solid F200/F400 sets

Discover your passion with treasure salvaging! Our double-handle grips (F200, F400) provide safety guarantee and immense power. Stainless steel construction and reinforced ropes will perform in any water.

find searching equipment

Magnetic solutions for business

Professional solutions for mounting non-invasive. Threaded grips (M8, M10, M12) guarantee quick improvement of work on warehouses. Perfect for mounting lamps, sensors and banners.

check technical specs

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product on order Ships in 3-5 days

MP 25x13x4 / N38 - ring magnet

ring magnet

Catalog no 030190

GTIN/EAN: 5906301812074

5.00

Diameter

25 mm [±0,1 mm]

internal diameter Ø

13 mm [±0,1 mm]

Height

4 mm [±0,1 mm]

Weight

10.74 g

Magnetization Direction

↑ axial

Load capacity

4.14 kg / 40.57 N

Magnetic Induction

188.92 mT / 1889 Gs

Coating

[NiCuNi] Nickel

6.77 with VAT / pcs + price for transport

5.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.50 ZŁ
6.77 ZŁ
price from 150 pcs
5.17 ZŁ
6.36 ZŁ
price from 500 pcs
4.84 ZŁ
5.95 ZŁ
Looking for a better price?

Call us now +48 22 499 98 98 or get in touch via our online form our website.
Force and shape of neodymium magnets can be tested on our power calculator.

Orders submitted before 14:00 will be dispatched today!

Technical - MP 25x13x4 / N38 - ring magnet

Specification / characteristics - MP 25x13x4 / N38 - ring magnet

properties
properties values
Cat. no. 030190
GTIN/EAN 5906301812074
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 25 mm [±0,1 mm]
internal diameter Ø 13 mm [±0,1 mm]
Height 4 mm [±0,1 mm]
Weight 10.74 g
Magnetization Direction ↑ axial
Load capacity ~ ? 4.14 kg / 40.57 N
Magnetic Induction ~ ? 188.92 mT / 1889 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 25x13x4 / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - data

Presented information constitute the direct effect of a physical calculation. Values rely on models for the class Nd2Fe14B. Actual parameters might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap for designers.

Table 1: Static force (force vs distance) - power drop
MP 25x13x4 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5777 Gs
577.7 mT
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
warning
1 mm 5310 Gs
531.0 mT
3.50 kg / 7.71 lbs
3497.4 g / 34.3 N
warning
2 mm 4846 Gs
484.6 mT
2.91 kg / 6.42 lbs
2912.4 g / 28.6 N
warning
3 mm 4397 Gs
439.7 mT
2.40 kg / 5.29 lbs
2398.5 g / 23.5 N
warning
5 mm 3576 Gs
357.6 mT
1.59 kg / 3.50 lbs
1586.2 g / 15.6 N
safe
10 mm 2073 Gs
207.3 mT
0.53 kg / 1.17 lbs
532.9 g / 5.2 N
safe
15 mm 1231 Gs
123.1 mT
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
safe
20 mm 773 Gs
77.3 mT
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
safe
30 mm 356 Gs
35.6 mT
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
safe
50 mm 115 Gs
11.5 mT
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
safe

Table 2: Vertical load (wall)
MP 25x13x4 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.83 kg / 1.83 lbs
828.0 g / 8.1 N
1 mm Stal (~0.2) 0.70 kg / 1.54 lbs
700.0 g / 6.9 N
2 mm Stal (~0.2) 0.58 kg / 1.28 lbs
582.0 g / 5.7 N
3 mm Stal (~0.2) 0.48 kg / 1.06 lbs
480.0 g / 4.7 N
5 mm Stal (~0.2) 0.32 kg / 0.70 lbs
318.0 g / 3.1 N
10 mm Stal (~0.2) 0.11 kg / 0.23 lbs
106.0 g / 1.0 N
15 mm Stal (~0.2) 0.04 kg / 0.08 lbs
38.0 g / 0.4 N
20 mm Stal (~0.2) 0.01 kg / 0.03 lbs
14.0 g / 0.1 N
30 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 25x13x4 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N

Table 4: Material efficiency (substrate influence) - sheet metal selection
MP 25x13x4 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
1 mm
25%
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
2 mm
50%
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
3 mm
75%
3.10 kg / 6.85 lbs
3105.0 g / 30.5 N
5 mm
100%
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
10 mm
100%
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
11 mm
100%
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
12 mm
100%
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N

Table 5: Thermal resistance (material behavior) - thermal limit
MP 25x13x4 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
OK
40 °C -2.2% 4.05 kg / 8.93 lbs
4048.9 g / 39.7 N
OK
60 °C -4.4% 3.96 kg / 8.73 lbs
3957.8 g / 38.8 N
OK
80 °C -6.6% 3.87 kg / 8.52 lbs
3866.8 g / 37.9 N
100 °C -28.8% 2.95 kg / 6.50 lbs
2947.7 g / 28.9 N

Table 6: Magnet-Magnet interaction (repulsion) - field range
MP 25x13x4 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 83.66 kg / 184.44 lbs
6 082 Gs
12.55 kg / 27.67 lbs
12549 g / 123.1 N
N/A
1 mm 77.09 kg / 169.95 lbs
11 091 Gs
11.56 kg / 25.49 lbs
11563 g / 113.4 N
69.38 kg / 152.95 lbs
~0 Gs
2 mm 70.68 kg / 155.81 lbs
10 620 Gs
10.60 kg / 23.37 lbs
10601 g / 104.0 N
63.61 kg / 140.23 lbs
~0 Gs
3 mm 64.59 kg / 142.40 lbs
10 153 Gs
9.69 kg / 21.36 lbs
9689 g / 95.0 N
58.13 kg / 128.16 lbs
~0 Gs
5 mm 53.48 kg / 117.90 lbs
9 238 Gs
8.02 kg / 17.68 lbs
8022 g / 78.7 N
48.13 kg / 106.11 lbs
~0 Gs
10 mm 32.05 kg / 70.66 lbs
7 152 Gs
4.81 kg / 10.60 lbs
4808 g / 47.2 N
28.85 kg / 63.60 lbs
~0 Gs
20 mm 10.77 kg / 23.74 lbs
4 145 Gs
1.62 kg / 3.56 lbs
1615 g / 15.8 N
9.69 kg / 21.37 lbs
~0 Gs
50 mm 0.66 kg / 1.45 lbs
1 024 Gs
0.10 kg / 0.22 lbs
99 g / 1.0 N
0.59 kg / 1.30 lbs
~0 Gs
60 mm 0.32 kg / 0.70 lbs
712 Gs
0.05 kg / 0.10 lbs
48 g / 0.5 N
0.29 kg / 0.63 lbs
~0 Gs
70 mm 0.17 kg / 0.36 lbs
514 Gs
0.02 kg / 0.05 lbs
25 g / 0.2 N
0.15 kg / 0.33 lbs
~0 Gs
80 mm 0.09 kg / 0.20 lbs
383 Gs
0.01 kg / 0.03 lbs
14 g / 0.1 N
0.08 kg / 0.18 lbs
~0 Gs
90 mm 0.05 kg / 0.12 lbs
293 Gs
0.01 kg / 0.02 lbs
8 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs
100 mm 0.03 kg / 0.07 lbs
230 Gs
0.00 kg / 0.01 lbs
5 g / 0.0 N
0.03 kg / 0.07 lbs
~0 Gs

Table 7: Hazards (electronics) - precautionary measures
MP 25x13x4 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 17.0 cm
Hearing aid 10 Gs (1.0 mT) 13.5 cm
Timepiece 20 Gs (2.0 mT) 10.5 cm
Mobile device 40 Gs (4.0 mT) 8.0 cm
Car key 50 Gs (5.0 mT) 7.5 cm
Payment card 400 Gs (40.0 mT) 3.0 cm
HDD hard drive 600 Gs (60.0 mT) 2.5 cm

Table 8: Dynamics (kinetic energy) - collision effects
MP 25x13x4 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 21.33 km/h
(5.93 m/s)
0.19 J
30 mm 34.38 km/h
(9.55 m/s)
0.49 J
50 mm 44.29 km/h
(12.30 m/s)
0.81 J
100 mm 62.62 km/h
(17.39 m/s)
1.62 J

Table 9: Anti-corrosion coating durability
MP 25x13x4 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MP 25x13x4 / N38

Parameter Value SI Unit / Description
Magnetic Flux 24 861 Mx 248.6 µWb
Pc Coefficient 1.02 High (Stable)

Table 11: Submerged application
MP 25x13x4 / N38

Environment Effective steel pull Effect
Air (land) 4.14 kg Standard
Water (riverbed) 4.74 kg
(+0.60 kg buoyancy gain)
+14.5%
Warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Sliding resistance

*Note: On a vertical surface, the magnet retains merely ~20% of its nominal pull.

2. Plate thickness effect

*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.

3. Thermal stability

*For N38 grade, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.02

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030190-2026
Quick Unit Converter
Pulling force

Field Strength

Other offers

It is ideally suited for places where solid attachment of the magnet to the substrate is required without the risk of detachment. Mounting is clean and reversible, unlike gluing. This product with a force of 4.14 kg works great as a cabinet closure, speaker holder, or mounting element in devices.
This is a crucial issue when working with model MP 25x13x4 / N38. Neodymium magnets are sintered ceramics, which means they are very brittle and inelastic. One turn too many can destroy the magnet, so do it slowly. The flat screw head should evenly press the magnet. Remember: cracking during assembly results from material properties, not a product defect.
These magnets are coated with standard Ni-Cu-Ni plating, which protects them in indoor conditions, but does not ensure full waterproofing. Damage to the protective layer during assembly is the most common cause of rusting. This product is dedicated for indoor use. For outdoor applications, we recommend choosing rubberized holders or additional protection with varnish.
A screw or bolt with a thread diameter smaller than 13 mm fits this model. If the magnet does not have a chamfer (cone), we recommend using a screw with a flat or cylindrical head, or possibly using a washer. Always check that the screw head is not larger than the outer diameter of the magnet (25 mm), so it doesn't protrude beyond the outline.
This model is characterized by dimensions Ø25x4 mm and a weight of 10.74 g. The pulling force of this model is an impressive 4.14 kg, which translates to 40.57 N in newtons. The mounting hole diameter is precisely 13 mm.
These magnets are magnetized axially (through the thickness), which means one flat side is the N pole and the other is S. If you want two such magnets screwed with cones facing each other (faces) to attract, you must connect them with opposite poles (N to S). When ordering a larger quantity, magnets are usually packed in stacks, where they are already naturally paired.

Pros and cons of rare earth magnets.

Strengths

Apart from their consistent magnetism, neodymium magnets have these key benefits:
  • They do not lose strength, even during around 10 years – the drop in power is only ~1% (based on measurements),
  • They are extremely resistant to demagnetization induced by external field influence,
  • Thanks to the metallic finish, the plating of nickel, gold-plated, or silver-plated gives an professional appearance,
  • Magnets are distinguished by extremely high magnetic induction on the active area,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • Possibility of precise machining and optimizing to complex requirements,
  • Wide application in future technologies – they are used in data components, electric motors, medical equipment, and modern systems.
  • Thanks to concentrated force, small magnets offer high operating force, in miniature format,

Cons

What to avoid - cons of neodymium magnets: weaknesses and usage proposals
  • To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
  • Neodymium magnets decrease their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
  • Due to limitations in realizing nuts and complex forms in magnets, we propose using cover - magnetic mount.
  • Possible danger to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which gains importance in the context of child health protection. Additionally, small elements of these magnets can be problematic in diagnostics medical when they are in the body.
  • With large orders the cost of neodymium magnets is a challenge,

Holding force characteristics

Detachment force of the magnet in optimal conditionswhat affects it?

Breakaway force was defined for optimal configuration, including:
  • on a plate made of structural steel, optimally conducting the magnetic field
  • with a cross-section no less than 10 mm
  • with a surface perfectly flat
  • without the slightest clearance between the magnet and steel
  • for force applied at a right angle (in the magnet axis)
  • in neutral thermal conditions

What influences lifting capacity in practice

Real force is influenced by specific conditions, including (from most important):
  • Space between magnet and steel – every millimeter of separation (caused e.g. by varnish or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
  • Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
  • Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
  • Material type – the best choice is pure iron steel. Hardened steels may have worse magnetic properties.
  • Base smoothness – the smoother and more polished the plate, the better the adhesion and higher the lifting capacity. Roughness creates an air distance.
  • Thermal environment – heating the magnet results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.

Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. In addition, even a small distance between the magnet and the plate decreases the load capacity.

H&S for magnets
Magnet fragility

Neodymium magnets are sintered ceramics, which means they are fragile like glass. Clashing of two magnets will cause them breaking into shards.

Electronic hazard

Intense magnetic fields can destroy records on payment cards, hard drives, and other magnetic media. Stay away of at least 10 cm.

Pacemakers

Health Alert: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.

Compass and GPS

GPS units and smartphones are extremely sensitive to magnetism. Direct contact with a strong magnet can permanently damage the internal compass in your phone.

Product not for children

These products are not toys. Eating several magnets may result in them connecting inside the digestive tract, which poses a direct threat to life and necessitates immediate surgery.

Finger safety

Mind your fingers. Two powerful magnets will snap together immediately with a force of several hundred kilograms, crushing anything in their path. Be careful!

Sensitization to coating

Some people suffer from a sensitization to nickel, which is the standard coating for NdFeB magnets. Prolonged contact might lead to an allergic reaction. We recommend use safety gloves.

Do not overheat magnets

Regular neodymium magnets (grade N) undergo demagnetization when the temperature exceeds 80°C. This process is irreversible.

Handling guide

Handle magnets consciously. Their huge power can surprise even professionals. Be vigilant and do not underestimate their power.

Dust is flammable

Dust produced during cutting of magnets is flammable. Avoid drilling into magnets without proper cooling and knowledge.

Important! Details about hazards in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98