tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy very strong magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in difficult, demanding climate conditions, including during rain and snow read...

magnets with holders

Magnetic holders can be used to facilitate production processes, underwater exploration, or searching for meteors made of ore more...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 20x8x5 / N38 - ring magnet

ring magnet

Catalog no 030188

GTIN: 5906301812050

5

Diameter [±0,1 mm]

20 mm

internal diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

5 mm

Weight

14.14 g

Magnetization Direction

↑ axial

Load capacity

2.28 kg / 22.36 N

Magnetic Induction

206.25 mT

Coating

[NiCuNi] nickel

3.44 with VAT / pcs + price for transport

2.80 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.80 ZŁ
3.44 ZŁ
price from 215 pcs
2.63 ZŁ
3.24 ZŁ
price from 786 pcs
2.46 ZŁ
3.03 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MP 20x8x5 / N38 - ring magnet

Specification/characteristics MP 20x8x5 / N38 - ring magnet
properties
values
Cat. no.
030188
GTIN
5906301812050
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
20 mm [±0,1 mm]
internal diameter Ø
8 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
14.14 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.28 kg / 22.36 N
Magnetic Induction ~ ?
206.25 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 20x8x5 / N38 in a ring-shaped form are frequently used in various industries due to their unique properties. Thanks to a powerful magnetic field of 2.28 kg, which can be described as strength, they are extremely useful in applications that require high magnetic power in a relatively small area. Usage of MP 20x8x5 / N38 magnets include electric motors, generators, audio systems, and numerous other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 14.14 grams, which makes them more practical compared to bulkier alternatives.
The operation of ring magnets results from their unique atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Ring magnets stand out high magnetic strength, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Significant importance in modern technologies – are used in HDD drives, electric drive mechanisms, medical equipment or other modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, if swallowed, which becomes significant in the context of child safety. It's also worth noting that miniscule components of these devices can be problematic in medical diagnosis when they are in the body.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will bounce and also clash together within a distance of several to almost 10 cm from each other.

Neodymium magnetic are extremely fragile, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 Maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98