Neodymium magnets – strongest on the market

Want to buy really powerful magnets? Our range includes wide selection of disc, cylindrical and ring magnets. Best choice for domestic applications, garage and industrial tasks. See products available immediately.

check magnet catalog

Grips for underwater searches

Discover your passion related to seabed exploration! Our double-handle grips (F200, F400) provide safety guarantee and huge lifting capacity. Solid, corrosion-resistant housing and reinforced ropes will perform in challenging water conditions.

choose your set

Industrial magnetic grips industrial

Proven solutions for mounting non-invasive. Threaded mounts (M8, M10, M12) guarantee instant organization of work on production halls. Perfect for mounting lighting, detectors and ads.

check technical specs

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product on order Ships in 3-5 days

MP 12x5x2 / N38 - ring magnet

ring magnet

Catalog no 030498

Diameter

12 mm [±0,1 mm]

internal diameter Ø

5 mm [±0,1 mm]

Height

2 mm [±0,1 mm]

Weight

1.4 g

Magnetization Direction

↑ axial

Load capacity

1.15 kg / 11.29 N

Magnetic Induction

195.97 mT / 1960 Gs

Coating

[NiCuNi] Nickel

1.230 with VAT / pcs + price for transport

1.000 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.000 ZŁ
1.230 ZŁ
price from 600 pcs
0.940 ZŁ
1.156 ZŁ
price from 2500 pcs
0.880 ZŁ
1.082 ZŁ
Looking for a better price?

Call us now +48 888 99 98 98 alternatively get in touch by means of request form the contact section.
Parameters along with form of a magnet can be verified using our power calculator.

Same-day processing for orders placed before 14:00.

Technical data of the product - MP 12x5x2 / N38 - ring magnet

Specification / characteristics - MP 12x5x2 / N38 - ring magnet

properties
properties values
Cat. no. 030498
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 12 mm [±0,1 mm]
internal diameter Ø 5 mm [±0,1 mm]
Height 2 mm [±0,1 mm]
Weight 1.4 g
Magnetization Direction ↑ axial
Load capacity ~ ? 1.15 kg / 11.29 N
Magnetic Induction ~ ? 195.97 mT / 1960 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 12x5x2 / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical modeling of the product - technical parameters

Presented values constitute the result of a engineering analysis. Values were calculated on models for the material Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Treat these data as a supplementary guide when designing systems.

Table 1: Static force (force vs gap) - interaction chart
MP 12x5x2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 6085 Gs
608.5 mT
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
safe
1 mm 5082 Gs
508.2 mT
0.80 kg / 1.77 lbs
802.2 g / 7.9 N
safe
2 mm 4147 Gs
414.7 mT
0.53 kg / 1.18 lbs
534.0 g / 5.2 N
safe
3 mm 3340 Gs
334.0 mT
0.35 kg / 0.76 lbs
346.3 g / 3.4 N
safe
5 mm 2152 Gs
215.2 mT
0.14 kg / 0.32 lbs
143.8 g / 1.4 N
safe
10 mm 822 Gs
82.2 mT
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
safe
15 mm 394 Gs
39.4 mT
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
safe
20 mm 221 Gs
22.1 mT
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
safe
30 mm 92 Gs
9.2 mT
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
safe
50 mm 28 Gs
2.8 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage capacity (wall)
MP 12x5x2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.23 kg / 0.51 lbs
230.0 g / 2.3 N
1 mm Stal (~0.2) 0.16 kg / 0.35 lbs
160.0 g / 1.6 N
2 mm Stal (~0.2) 0.11 kg / 0.23 lbs
106.0 g / 1.0 N
3 mm Stal (~0.2) 0.07 kg / 0.15 lbs
70.0 g / 0.7 N
5 mm Stal (~0.2) 0.03 kg / 0.06 lbs
28.0 g / 0.3 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MP 12x5x2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.58 kg / 1.27 lbs
575.0 g / 5.6 N

Table 4: Steel thickness (saturation) - sheet metal selection
MP 12x5x2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
1 mm
25%
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
2 mm
50%
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
3 mm
75%
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
5 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
10 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
11 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
12 mm
100%
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N

Table 5: Thermal resistance (material behavior) - thermal limit
MP 12x5x2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
OK
40 °C -2.2% 1.12 kg / 2.48 lbs
1124.7 g / 11.0 N
OK
60 °C -4.4% 1.10 kg / 2.42 lbs
1099.4 g / 10.8 N
OK
80 °C -6.6% 1.07 kg / 2.37 lbs
1074.1 g / 10.5 N
100 °C -28.8% 0.82 kg / 1.81 lbs
818.8 g / 8.0 N

Table 6: Magnet-Magnet interaction (attraction) - field collision
MP 12x5x2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 21.34 kg / 47.04 lbs
6 163 Gs
3.20 kg / 7.06 lbs
3201 g / 31.4 N
N/A
1 mm 17.97 kg / 39.61 lbs
11 168 Gs
2.69 kg / 5.94 lbs
2695 g / 26.4 N
16.17 kg / 35.65 lbs
~0 Gs
2 mm 14.88 kg / 32.81 lbs
10 165 Gs
2.23 kg / 4.92 lbs
2233 g / 21.9 N
13.40 kg / 29.53 lbs
~0 Gs
3 mm 12.20 kg / 26.89 lbs
9 202 Gs
1.83 kg / 4.03 lbs
1830 g / 17.9 N
10.98 kg / 24.20 lbs
~0 Gs
5 mm 8.00 kg / 17.63 lbs
7 450 Gs
1.20 kg / 2.64 lbs
1199 g / 11.8 N
7.20 kg / 15.87 lbs
~0 Gs
10 mm 2.67 kg / 5.88 lbs
4 304 Gs
0.40 kg / 0.88 lbs
400 g / 3.9 N
2.40 kg / 5.30 lbs
~0 Gs
20 mm 0.39 kg / 0.86 lbs
1 644 Gs
0.06 kg / 0.13 lbs
58 g / 0.6 N
0.35 kg / 0.77 lbs
~0 Gs
50 mm 0.01 kg / 0.02 lbs
275 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
60 mm 0.00 kg / 0.01 lbs
184 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.01 lbs
129 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
95 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
72 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
56 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (electronics) - precautionary measures
MP 12x5x2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 10.0 cm
Hearing aid 10 Gs (1.0 mT) 8.0 cm
Mechanical watch 20 Gs (2.0 mT) 6.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 4.5 cm
Car key 50 Gs (5.0 mT) 4.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.5 cm

Table 8: Dynamics (kinetic energy) - warning
MP 12x5x2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 29.23 km/h
(8.12 m/s)
0.05 J
30 mm 50.07 km/h
(13.91 m/s)
0.14 J
50 mm 64.63 km/h
(17.95 m/s)
0.23 J
100 mm 91.40 km/h
(25.39 m/s)
0.45 J

Table 9: Surface protection spec
MP 12x5x2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MP 12x5x2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 6 503 Mx 65.0 µWb
Pc Coefficient 1.34 High (Stable)

Table 11: Hydrostatics and buoyancy
MP 12x5x2 / N38

Environment Effective steel pull Effect
Air (land) 1.15 kg Standard
Water (riverbed) 1.32 kg
(+0.17 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Vertical hold

*Caution: On a vertical surface, the magnet holds only a fraction of its nominal pull.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) significantly limits the holding force.

3. Heat tolerance

*For N38 material, the critical limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.34

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030498-2026
Measurement Calculator
Magnet pull force

Field Strength

View more proposals

The ring-shaped magnet MP 12x5x2 / N38 is created for mechanical fastening, where glue might fail or be insufficient. Thanks to the hole (often for a screw), this model enables easy screwing to wood, wall, plastic, or metal. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 12x5x2 / N38. Neodymium magnets are sintered ceramics, which means they are very brittle and inelastic. One turn too many can destroy the magnet, so do it slowly. The flat screw head should evenly press the magnet. Remember: cracking during assembly results from material properties, not a product defect.
Moisture can penetrate micro-cracks in the coating and cause oxidation of the magnet. In the place of the mounting hole, the coating is thinner and can be damaged when tightening the screw, which will become a corrosion focus. If you must use it outside, paint it with anti-corrosion paint after mounting.
The inner hole diameter determines the maximum size of the mounting element. If the magnet does not have a chamfer (cone), we recommend using a screw with a flat or cylindrical head, or possibly using a washer. Aesthetic mounting requires selecting the appropriate head size.
It is a magnetic ring with a diameter of 12 mm and thickness 2 mm. The pulling force of this model is an impressive 1.15 kg, which translates to 11.29 N in newtons. The mounting hole diameter is precisely 5 mm.
The poles are located on the planes with holes, not on the sides of the ring. If you want two such magnets screwed with cones facing each other (faces) to attract, you must connect them with opposite poles (N to S). We do not offer paired sets with marked poles in this category, but they are easy to match manually.

Advantages and disadvantages of neodymium magnets.

Advantages

Besides their immense field intensity, neodymium magnets offer the following advantages:
  • They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (according to theory),
  • They possess excellent resistance to magnetism drop due to external magnetic sources,
  • The use of an metallic finish of noble metals (nickel, gold, silver) causes the element to have aesthetics,
  • The surface of neodymium magnets generates a intense magnetic field – this is one of their assets,
  • Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
  • Possibility of detailed creating and modifying to atypical applications,
  • Huge importance in electronics industry – they serve a role in magnetic memories, brushless drives, medical equipment, also other advanced devices.
  • Compactness – despite small sizes they provide effective action, making them ideal for precision applications

Disadvantages

Disadvantages of neodymium magnets:
  • They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only shields the magnet but also improves its resistance to damage
  • NdFeB magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
  • Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
  • We suggest a housing - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complicated shapes.
  • Possible danger related to microscopic parts of magnets are risky, when accidentally swallowed, which is particularly important in the context of child safety. Additionally, tiny parts of these magnets are able to disrupt the diagnostic process medical when they are in the body.
  • Due to neodymium price, their price exceeds standard values,

Lifting parameters

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The specified lifting capacity refers to the limit force, obtained under optimal environment, namely:
  • with the use of a yoke made of special test steel, guaranteeing full magnetic saturation
  • whose thickness is min. 10 mm
  • with a plane cleaned and smooth
  • under conditions of gap-free contact (surface-to-surface)
  • under vertical application of breakaway force (90-degree angle)
  • at temperature approx. 20 degrees Celsius

Determinants of lifting force in real conditions

Holding efficiency impacted by specific conditions, mainly (from priority):
  • Clearance – the presence of foreign body (paint, tape, gap) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
  • Force direction – declared lifting capacity refers to pulling vertically. When attempting to slide, the magnet holds much less (often approx. 20-30% of nominal force).
  • Substrate thickness – for full efficiency, the steel must be adequately massive. Thin sheet limits the lifting capacity (the magnet "punches through" it).
  • Material composition – different alloys attracts identically. Alloy additives worsen the attraction effect.
  • Surface condition – ground elements ensure maximum contact, which improves field saturation. Uneven metal reduce efficiency.
  • Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).

Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a small distance between the magnet and the plate lowers the load capacity.

H&S for magnets
Material brittleness

Watch out for shards. Magnets can fracture upon uncontrolled impact, ejecting shards into the air. We recommend safety glasses.

Operating temperature

Avoid heat. Neodymium magnets are sensitive to temperature. If you need operation above 80°C, inquire about special high-temperature series (H, SH, UH).

Flammability

Powder generated during machining of magnets is flammable. Avoid drilling into magnets unless you are an expert.

Health Danger

Health Alert: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have electronic implants.

Nickel allergy

Nickel alert: The Ni-Cu-Ni coating consists of nickel. If redness occurs, cease working with magnets and wear gloves.

Precision electronics

Navigation devices and mobile phones are highly susceptible to magnetic fields. Direct contact with a strong magnet can ruin the internal compass in your phone.

Powerful field

Handle magnets consciously. Their huge power can shock even experienced users. Be vigilant and respect their force.

Magnetic media

Equipment safety: Strong magnets can damage data carriers and delicate electronics (pacemakers, hearing aids, timepieces).

Hand protection

Danger of trauma: The pulling power is so great that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.

Swallowing risk

Adult use only. Small elements pose a choking risk, leading to serious injuries. Keep away from kids and pets.

Caution! Want to know more? Check our post: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98