MP 12x5x2 / N38 - ring magnet
ring magnet
Catalog no 030498
Diameter
12 mm [±0,1 mm]
internal diameter Ø
5 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
1.4 g
Magnetization Direction
↑ axial
Load capacity
1.15 kg / 11.29 N
Magnetic Induction
195.97 mT / 1960 Gs
Coating
[NiCuNi] Nickel
1.230 ZŁ with VAT / pcs + price for transport
1.000 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
alternatively get in touch by means of
request form
the contact section.
Parameters along with form of a magnet can be verified using our
power calculator.
Same-day processing for orders placed before 14:00.
Technical data of the product - MP 12x5x2 / N38 - ring magnet
Specification / characteristics - MP 12x5x2 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030498 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 12 mm [±0,1 mm] |
| internal diameter Ø | 5 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 1.4 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.15 kg / 11.29 N |
| Magnetic Induction ~ ? | 195.97 mT / 1960 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - technical parameters
Presented values constitute the result of a engineering analysis. Values were calculated on models for the material Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Treat these data as a supplementary guide when designing systems.
Table 1: Static force (force vs gap) - interaction chart
MP 12x5x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6085 Gs
608.5 mT
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
safe |
| 1 mm |
5082 Gs
508.2 mT
|
0.80 kg / 1.77 lbs
802.2 g / 7.9 N
|
safe |
| 2 mm |
4147 Gs
414.7 mT
|
0.53 kg / 1.18 lbs
534.0 g / 5.2 N
|
safe |
| 3 mm |
3340 Gs
334.0 mT
|
0.35 kg / 0.76 lbs
346.3 g / 3.4 N
|
safe |
| 5 mm |
2152 Gs
215.2 mT
|
0.14 kg / 0.32 lbs
143.8 g / 1.4 N
|
safe |
| 10 mm |
822 Gs
82.2 mT
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
safe |
| 15 mm |
394 Gs
39.4 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
safe |
| 20 mm |
221 Gs
22.1 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
safe |
| 30 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
safe |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage capacity (wall)
MP 12x5x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 1 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 3 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MP 12x5x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MP 12x5x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
|
| 1 mm |
|
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
|
| 2 mm |
|
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
|
| 3 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 5 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 10 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 11 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 12 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MP 12x5x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
OK |
| 40 °C | -2.2% |
1.12 kg / 2.48 lbs
1124.7 g / 11.0 N
|
OK |
| 60 °C | -4.4% |
1.10 kg / 2.42 lbs
1099.4 g / 10.8 N
|
OK |
| 80 °C | -6.6% |
1.07 kg / 2.37 lbs
1074.1 g / 10.5 N
|
|
| 100 °C | -28.8% |
0.82 kg / 1.81 lbs
818.8 g / 8.0 N
|
Table 6: Magnet-Magnet interaction (attraction) - field collision
MP 12x5x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.34 kg / 47.04 lbs
6 163 Gs
|
3.20 kg / 7.06 lbs
3201 g / 31.4 N
|
N/A |
| 1 mm |
17.97 kg / 39.61 lbs
11 168 Gs
|
2.69 kg / 5.94 lbs
2695 g / 26.4 N
|
16.17 kg / 35.65 lbs
~0 Gs
|
| 2 mm |
14.88 kg / 32.81 lbs
10 165 Gs
|
2.23 kg / 4.92 lbs
2233 g / 21.9 N
|
13.40 kg / 29.53 lbs
~0 Gs
|
| 3 mm |
12.20 kg / 26.89 lbs
9 202 Gs
|
1.83 kg / 4.03 lbs
1830 g / 17.9 N
|
10.98 kg / 24.20 lbs
~0 Gs
|
| 5 mm |
8.00 kg / 17.63 lbs
7 450 Gs
|
1.20 kg / 2.64 lbs
1199 g / 11.8 N
|
7.20 kg / 15.87 lbs
~0 Gs
|
| 10 mm |
2.67 kg / 5.88 lbs
4 304 Gs
|
0.40 kg / 0.88 lbs
400 g / 3.9 N
|
2.40 kg / 5.30 lbs
~0 Gs
|
| 20 mm |
0.39 kg / 0.86 lbs
1 644 Gs
|
0.06 kg / 0.13 lbs
58 g / 0.6 N
|
0.35 kg / 0.77 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
275 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
184 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
129 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
95 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MP 12x5x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MP 12x5x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.23 km/h
(8.12 m/s)
|
0.05 J | |
| 30 mm |
50.07 km/h
(13.91 m/s)
|
0.14 J | |
| 50 mm |
64.63 km/h
(17.95 m/s)
|
0.23 J | |
| 100 mm |
91.40 km/h
(25.39 m/s)
|
0.45 J |
Table 9: Surface protection spec
MP 12x5x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MP 12x5x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 503 Mx | 65.0 µWb |
| Pc Coefficient | 1.34 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MP 12x5x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.15 kg | Standard |
| Water (riverbed) |
1.32 kg
(+0.17 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical surface, the magnet holds only a fraction of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Heat tolerance
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.34
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more proposals
Advantages and disadvantages of neodymium magnets.
Advantages
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (according to theory),
- They possess excellent resistance to magnetism drop due to external magnetic sources,
- The use of an metallic finish of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- The surface of neodymium magnets generates a intense magnetic field – this is one of their assets,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of detailed creating and modifying to atypical applications,
- Huge importance in electronics industry – they serve a role in magnetic memories, brushless drives, medical equipment, also other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only shields the magnet but also improves its resistance to damage
- NdFeB magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We suggest a housing - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complicated shapes.
- Possible danger related to microscopic parts of magnets are risky, when accidentally swallowed, which is particularly important in the context of child safety. Additionally, tiny parts of these magnets are able to disrupt the diagnostic process medical when they are in the body.
- Due to neodymium price, their price exceeds standard values,
Lifting parameters
Breakaway strength of the magnet in ideal conditions – what contributes to it?
- with the use of a yoke made of special test steel, guaranteeing full magnetic saturation
- whose thickness is min. 10 mm
- with a plane cleaned and smooth
- under conditions of gap-free contact (surface-to-surface)
- under vertical application of breakaway force (90-degree angle)
- at temperature approx. 20 degrees Celsius
Determinants of lifting force in real conditions
- Clearance – the presence of foreign body (paint, tape, gap) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to pulling vertically. When attempting to slide, the magnet holds much less (often approx. 20-30% of nominal force).
- Substrate thickness – for full efficiency, the steel must be adequately massive. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Material composition – different alloys attracts identically. Alloy additives worsen the attraction effect.
- Surface condition – ground elements ensure maximum contact, which improves field saturation. Uneven metal reduce efficiency.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a small distance between the magnet and the plate lowers the load capacity.
H&S for magnets
Material brittleness
Watch out for shards. Magnets can fracture upon uncontrolled impact, ejecting shards into the air. We recommend safety glasses.
Operating temperature
Avoid heat. Neodymium magnets are sensitive to temperature. If you need operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Flammability
Powder generated during machining of magnets is flammable. Avoid drilling into magnets unless you are an expert.
Health Danger
Health Alert: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have electronic implants.
Nickel allergy
Nickel alert: The Ni-Cu-Ni coating consists of nickel. If redness occurs, cease working with magnets and wear gloves.
Precision electronics
Navigation devices and mobile phones are highly susceptible to magnetic fields. Direct contact with a strong magnet can ruin the internal compass in your phone.
Powerful field
Handle magnets consciously. Their huge power can shock even experienced users. Be vigilant and respect their force.
Magnetic media
Equipment safety: Strong magnets can damage data carriers and delicate electronics (pacemakers, hearing aids, timepieces).
Hand protection
Danger of trauma: The pulling power is so great that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.
Swallowing risk
Adult use only. Small elements pose a choking risk, leading to serious injuries. Keep away from kids and pets.
