ZM XMAG2 105 elementów - magnetic toy
magnetic toy
Catalog no 040211
GTIN: 5906301812371
Weight
569 g
49.20 ZŁ with VAT / pcs + price for transport
40.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 22 499 98 98
otherwise send us a note via
inquiry form
the contact page.
Parameters along with structure of a neodymium magnet can be verified using our
power calculator.
Same-day processing for orders placed before 14:00.
ZM XMAG2 105 elementów - magnetic toy
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense field intensity, neodymium magnets offer the following advantages:
- They retain their magnetic properties for nearly 10 years – the drop is just ~1% (according to analyses),
- They protect against demagnetization induced by ambient electromagnetic environments remarkably well,
- The use of a mirror-like nickel surface provides a refined finish,
- They have exceptional magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Key role in new technology industries – they are utilized in hard drives, electromechanical systems, healthcare devices along with other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and reinforces its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
- Potential hazard related to magnet particles may arise, especially if swallowed, which is important in the health of young users. Moreover, miniature parts from these products might complicate medical imaging when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Determinants of lifting force in real conditions
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Magnets are not toys, youngest should not play with them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Magnets made of neodymium are incredibly delicate, they easily break and can become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should have them very firmly.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Safety precautions!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.
