ZM XMAG2 105 elementów - magnetic toy
magnetic toy
Catalog no 040211
GTIN: 5906301812371
Weight
569 g
49.20 ZŁ with VAT / pcs + price for transport
40.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know through
our online form
the contact page.
Lifting power along with structure of magnetic components can be reviewed on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
ZM XMAG2 105 elementów - magnetic toy
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
- They remain magnetized despite exposure to magnetic surroundings,
- In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- The ability for accurate shaping and adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Significant impact in modern technologies – they are utilized in computer drives, rotating machines, healthcare devices along with sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in miniature devices
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall strength,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is notable in the health of young users. Furthermore, small elements from these assemblies may complicate medical imaging once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured under optimal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- under standard ambient temperature
Key elements affecting lifting force
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.
Caution with Neodymium Magnets
Neodymium magnetic are highly susceptible to damage, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Maintain neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
