UMGB 75x28 [M8+M10] GW F200 +Lina GOBLIN / N38 - goblin magnetic holder
goblin magnetic holder
Catalog no 350436
GTIN: 5906301814788
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
28 mm
Weight
900 g
Magnetization Direction
↑ axial
Load capacity
280 kg / 2745.86 N
Coating
[NiCuNi] nickel
215.00 ZŁ with VAT / pcs + price for transport
174.80 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 22 499 98 98
otherwise let us know via
form
our website.
Strength as well as structure of a neodymium magnet can be estimated on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
UMGB 75x28 [M8+M10] GW F200 +Lina GOBLIN / N38 - goblin magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from outside magnetic sources,
- The use of a decorative silver surface provides a smooth finish,
- They have very high magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Important function in new technology industries – they find application in data storage devices, rotating machines, clinical machines or even high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall robustness,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment. For outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Possible threat due to small fragments may arise, when consumed by mistake, which is significant in the family environments. Moreover, tiny components from these assemblies might interfere with diagnostics after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Highest magnetic holding force – what affects it?
The given strength of the magnet represents the optimal strength, determined in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Lifting capacity in practice – influencing factors
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a small distance {between} the magnet’s surface and the plate lowers the holding force.
Handle with Care: Neodymium Magnets
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnetic are incredibly fragile, they easily fall apart as well as can become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Warning!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.