e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult, demanding weather, including snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance production, underwater exploration, or locating meteors from gold more information...

Enjoy shipping of your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGB 75x28 [M8+M10] GW F200 +Lina GOBLIN / N38 - goblin magnetic holder

goblin magnetic holder

Catalog no 350436

GTIN: 5906301814788

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

28 mm

Weight

900 g

Magnetization Direction

↑ axial

Load capacity

280 kg / 2745.86 N

Coating

[NiCuNi] nickel

215.00 with VAT / pcs + price for transport

174.80 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
174.80 ZŁ
215.00 ZŁ
price from 6 pcs
174.80 ZŁ
215.00 ZŁ
price from 103 pcs
174.80 ZŁ
215.00 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 if you prefer contact us using inquiry form the contact section.
Force along with structure of neodymium magnets can be calculated with our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

UMGB 75x28 [M8+M10] GW F200 +Lina GOBLIN / N38 - goblin magnetic holder

Specification/characteristics UMGB 75x28 [M8+M10] GW F200 +Lina GOBLIN / N38 - goblin magnetic holder
properties
values
Cat. no.
350436
GTIN
5906301814788
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
28 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
280 kg / 2745.86 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They retain their attractive force for around 10 years – the drop is just ~1% (in theory),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the glossy finish and gold coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Wide application in modern technologies – they find application in HDDs, electric motors, healthcare devices as well as sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is important in the protection of children. It should also be noted that miniature parts from these products may complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Optimal lifting capacity of a neodymium magnetwhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, assessed in the best circumstances, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate reduces the holding force.

Precautions

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are especially fragile, resulting in damage.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98