UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder
goblin magnetic holder
Catalog no 350441
GTIN: 5906301814832
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
28 mm
Weight
900 g
Magnetization Direction
↑ axial
Load capacity
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
280.00 ZŁ with VAT / pcs + price for transport
227.64 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 888 99 98 98
alternatively get in touch by means of
our online form
through our site.
Specifications along with form of a neodymium magnet can be estimated using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They retain their full power for around 10 years – the loss is just ~1% (in theory),
- They show strong resistance to demagnetization from outside magnetic sources,
- Thanks to the polished finish and gold coating, they have an elegant appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their application range,
- Wide application in modern technologies – they are utilized in data storage devices, electric motors, healthcare devices as well as other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall strength,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can rust. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
- Possible threat linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. It should also be noted that miniature parts from these devices have the potential to interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting force for a neodymium magnet – what it depends on?
The given pulling force of the magnet represents the maximum force, measured in the best circumstances, namely:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate lowers the holding force.
Handle Neodymium Magnets Carefully
Keep neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Magnets made of neodymium are delicate as well as can easily break and shatter.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them extremely strongly.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.
