UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder
goblin magnetic holder
Catalog no 350441
GTIN: 5906301814832
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
28 mm
Weight
900 g
Magnetization Direction
↑ axial
Load capacity
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
280.00 ZŁ with VAT / pcs + price for transport
227.64 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have problems deciding?
Pick up the phone and ask
+48 888 99 98 98
alternatively send us a note using
our online form
the contact page.
Specifications and shape of a magnet can be tested on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They protect against demagnetization induced by surrounding magnetic influence very well,
- Because of the brilliant layer of gold, the component looks visually appealing,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Significant impact in modern technologies – they are utilized in computer drives, electric drives, medical equipment along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in compact constructions
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is crucial in the context of child safety. Furthermore, miniature parts from these assemblies may hinder health screening once in the system,
- Due to expensive raw materials, their cost is considerably higher,
Maximum magnetic pulling force – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, calculated in ideal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- in normal thermal conditions
Lifting capacity in real conditions – factors
The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Exercise Caution with Neodymium Magnets
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are especially fragile, resulting in damage.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will jump and also touch together within a distance of several to around 10 cm from each other.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Pay attention!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.