tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in challenging climate conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater discoveries, or searching for space rocks made of ore see more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product on order Ships in 3-5 days

UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder

goblin magnetic holder

Catalog no 350441

GTIN: 5906301814832

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

28 mm

Weight

900 g

Magnetization Direction

↑ axial

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

280.00 with VAT / pcs + price for transport

227.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
227.64 ZŁ
280.00 ZŁ
price from 5 pcs
213.98 ZŁ
263.20 ZŁ
price from 80 pcs
200.32 ZŁ
246.40 ZŁ

Need advice?

Pick up the phone and ask +48 888 99 98 98 or contact us through contact form our website.
Parameters as well as structure of a neodymium magnet can be checked with our modular calculator.

Orders submitted before 14:00 will be dispatched today!

UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder

Specification/characteristics UMGB 75x28 [M10x3] GW F200 PLATINIUM + Lina GOBLIN / N52 - goblin magnetic holder
properties
values
Cat. no.
350441
GTIN
5906301814832
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
28 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for almost 10 years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a reflective layer of nickel, the element gains a clean look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Significant impact in advanced technical fields – they are used in data storage devices, electromechanical systems, healthcare devices along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is notable in the protection of children. Furthermore, miniature parts from these assemblies may disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, determined in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet and the plate lowers the load capacity.

Handle Neodymium Magnets with Caution

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnetic are characterized by being fragile, which can cause them to shatter.

Neodymium magnets are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is essential to maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Safety precautions!

In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98