UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder
goblin magnetic holder
Catalog no 350440
GTIN: 5906301814825
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
28 mm
Weight
900 g
Magnetization Direction
↑ axial
Load capacity
310 kg / 3040.06 N
Coating
[NiCuNi] nickel
255.00 ZŁ with VAT / pcs + price for transport
207.32 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Pick up the phone and ask
+48 22 499 98 98
alternatively send us a note using
inquiry form
the contact section.
Lifting power as well as shape of magnets can be tested with our
power calculator.
Order by 14:00 and we’ll ship today!
UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
- They are extremely resistant to demagnetization caused by external field interference,
- Thanks to the glossy finish and silver coating, they have an aesthetic appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their application range,
- Important function in advanced technical fields – they find application in HDDs, electric drives, diagnostic apparatus along with sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall robustness,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
- Limited ability to create complex details in the magnet – the use of a housing is recommended,
- Health risk due to small fragments may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that tiny components from these products might disrupt scanning after being swallowed,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet means the optimal strength, calculated in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- in normal thermal conditions
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets bounce and touch each other mutually within a radius of several to around 10 cm from each other.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are incredibly delicate, they easily fall apart and can crumble.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be in the vicinity children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Be careful!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
