UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder
goblin magnetic holder
Catalog no 350440
GTIN: 5906301814825
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
28 mm
Weight
900 g
Magnetization Direction
↑ axial
Load capacity
310 kg / 3040.06 N
Coating
[NiCuNi] nickel
255.00 ZŁ with VAT / pcs + price for transport
207.32 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 22 499 98 98
or send us a note via
form
the contact section.
Lifting power along with structure of a magnet can be verified on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- They do not lose their magnetism, even after approximately ten years – the loss of strength is only ~1% (according to tests),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a shiny layer of silver, the element gains a sleek look,
- The outer field strength of the magnet shows elevated magnetic properties,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Key role in modern technologies – they are utilized in computer drives, electric motors, healthcare devices along with other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Safety concern linked to microscopic shards may arise, when consumed by mistake, which is crucial in the protection of children. Additionally, tiny components from these magnets may disrupt scanning once in the system,
- Due to expensive raw materials, their cost is considerably higher,
Maximum holding power of the magnet – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, calculated in the best circumstances, namely:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- under perpendicular detachment force
- at room temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.
Be Cautious with Neodymium Magnets
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnetic are extremely fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Safety rules!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.