tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight, solid enclosure are perfect for use in challenging weather, including snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance production processes, underwater discoveries, or finding space rocks made of ore see...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder

goblin magnetic holder

Catalog no 350440

GTIN: 5906301814825

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

28 mm

Weight

900 g

Magnetization Direction

↑ axial

Load capacity

310 kg / 3040.06 N

Coating

[NiCuNi] nickel

255.00 with VAT / pcs + price for transport

207.32 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
207.32 ZŁ
255.00 ZŁ
price from 5 pcs
194.88 ZŁ
239.70 ZŁ
price from 90 pcs
182.44 ZŁ
224.40 ZŁ

Want to negotiate?

Call us +48 888 99 98 98 or contact us by means of form our website.
Parameters along with form of a magnet can be analyzed on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder

Specification/characteristics UMGB 75x28 [M10x3] GW F200 GOLD +Lina GOBLIN / N42 - goblin magnetic holder
properties
values
Cat. no.
350440
GTIN
5906301814825
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
28 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
310 kg / 3040.06 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense strength, neodymium magnets offer the following advantages:

  • They do not lose their even over approximately 10 years – the loss of lifting capacity is only ~1% (according to tests),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • The use of a mirror-like gold surface provides a refined finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Important function in cutting-edge sectors – they are used in HDDs, electric drives, clinical machines and high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment. For outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. Moreover, miniature parts from these assemblies can hinder health screening after being swallowed,
  • Due to expensive raw materials, their cost is relatively high,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, calculated in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98