e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight enclosure are ideally suited for use in challenging weather, including in the rain and snow see...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or searching for meteorites made of metal check...

Order is always shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGB 67x28 [M8+M10] GW F 120+ Lina GOBLIN / N38 - goblin magnetic holder

goblin magnetic holder

Catalog no 350435

GTIN: 5906301814771

5

Diameter Ø [±0,1 mm]

67 mm

Height [±0,1 mm]

28 mm

Weight

700 g

Magnetization Direction

↑ axial

Load capacity

180 kg / 1765.2 N

Coating

[NiCuNi] nickel

165.24 with VAT / pcs + price for transport

134.34 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
134.34 ZŁ
165.24 ZŁ
price from 8 pcs
126.28 ZŁ
155.32 ZŁ
price from 134 pcs
118.22 ZŁ
145.41 ZŁ

Can't decide what to choose?

Contact us by phone +48 888 99 98 98 otherwise contact us through contact form the contact page.
Specifications as well as form of magnetic components can be tested with our modular calculator.

Same-day shipping for orders placed before 14:00.

UMGB 67x28 [M8+M10] GW F 120+ Lina GOBLIN / N38 - goblin magnetic holder

Specification/characteristics UMGB 67x28 [M8+M10] GW F 120+ Lina GOBLIN / N38 - goblin magnetic holder
properties
values
Cat. no.
350435
GTIN
5906301814771
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
67 mm [±0,1 mm]
Height
28 mm [±0,1 mm]
Weight
700 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
180 kg / 1765.2 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their magnetism, even after around 10 years – the reduction of lifting capacity is only ~1% (based on measurements),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a bright layer of nickel, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Important function in cutting-edge sectors – they serve a purpose in data storage devices, electric motors, healthcare devices or even high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Potential hazard from tiny pieces may arise, when consumed by mistake, which is notable in the context of child safety. Moreover, minuscule fragments from these devices can hinder health screening once in the system,
  • Due to the price of neodymium, their cost is above average,

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are fragile and can easily crack and get damaged.

Neodymium magnets are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98