UMGB 107x40 [M8+M10] GW F400 +Lina GOBLIN / N38 - goblin magnetic holder
goblin magnetic holder
Catalog no 350438
GTIN: 5906301814801
Diameter Ø [±0,1 mm]
107 mm
Height [±0,1 mm]
40 mm
Weight
2350 g
Magnetization Direction
↑ axial
Load capacity
480 kg / 4707.19 N
Coating
[NiCuNi] nickel
435.24 ZŁ with VAT / pcs + price for transport
353.85 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Call us
+48 22 499 98 98
if you prefer let us know through
inquiry form
our website.
Force and appearance of magnets can be calculated on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
UMGB 107x40 [M8+M10] GW F400 +Lina GOBLIN / N38 - goblin magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They retain their full power for around 10 years – the drop is just ~1% (based on simulations),
- They are very resistant to demagnetization caused by external magnetic fields,
- Because of the lustrous layer of silver, the component looks visually appealing,
- The outer field strength of the magnet shows elevated magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
- Important function in cutting-edge sectors – they are utilized in hard drives, rotating machines, medical equipment and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall robustness,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of non-metallic materials,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Potential hazard related to magnet particles may arise, especially if swallowed, which is important in the family environments. Additionally, small elements from these magnets might disrupt scanning after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum magnetic pulling force – what affects it?
The given pulling force of the magnet represents the maximum force, determined in ideal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Exercise Caution with Neodymium Magnets
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets jump and also clash mutually within a distance of several to around 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Magnets made of neodymium are particularly fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
