RM R4 - 5000 Gs / N52 - magnetic distributor
magnetic distributor
Catalog no 280254
GTIN: 5906301814450
Weight
0.01 g
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
66.42 ZŁ with VAT / pcs + price for transport
54.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Pick up the phone and ask
+48 888 99 98 98
alternatively let us know using
our online form
the contact section.
Force along with form of neodymium magnets can be calculated using our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
RM R4 - 5000 Gs / N52 - magnetic distributor
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous pulling force, neodymium magnets offer the following advantages:
- They do not lose their even during approximately ten years – the decrease of power is only ~1% (according to tests),
- They are very resistant to demagnetization caused by external magnetic fields,
- By applying a shiny layer of silver, the element gains a modern look,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for custom shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Key role in new technology industries – they are used in data storage devices, electric drives, diagnostic apparatus or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in small systems
Disadvantages of neodymium magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall durability,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Safety concern related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. Additionally, small elements from these magnets might hinder health screening if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given strength of the magnet represents the optimal strength, determined under optimal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- at room temperature
Determinants of practical lifting force of a magnet
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Precautions with Neodymium Magnets
Neodymium magnets are the strongest magnets ever invented. Their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are highly fragile, they easily fall apart as well as can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Safety rules!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
