RM R4 - 5000 Gs / N52 - magnetic distributor
magnetic distributor
Catalog no 280254
GTIN: 5906301814450
Weight
0.01 g
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
66.42 ZŁ with VAT / pcs + price for transport
54.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us now
+48 22 499 98 98
otherwise contact us via
our online form
the contact page.
Weight along with appearance of a magnet can be calculated using our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
RM R4 - 5000 Gs / N52 - magnetic distributor
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetism, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
- They are very resistant to demagnetization caused by external field interference,
- Because of the reflective layer of gold, the component looks high-end,
- They possess significant magnetic force measurable at the magnet’s surface,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Significant impact in cutting-edge sectors – they serve a purpose in HDDs, electric motors, diagnostic apparatus and high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall strength,
- They lose power at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Potential hazard related to magnet particles may arise, especially if swallowed, which is important in the context of child safety. Furthermore, tiny components from these magnets have the potential to disrupt scanning after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum magnetic pulling force – what contributes to it?
The given strength of the magnet represents the optimal strength, measured in ideal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Caution with Neodymium Magnets
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Neodymium magnets will jump and also contact together within a distance of several to almost 10 cm from each other.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are delicate as well as can easily break and get damaged.
Magnets made of neodymium are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Warning!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
