tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in variable and difficult weather conditions, including during snow and rain check...

magnets with holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or searching for meteors from gold more information...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

RM R4 - 5000 Gs / N52 - magnetic distributor

magnetic distributor

Catalog no 280254

GTIN: 5906301814450

5

Weight

0.01 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

66.42 with VAT / pcs + price for transport

54.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
54.00 ZŁ
66.42 ZŁ
price from 20 pcs
50.76 ZŁ
62.43 ZŁ
price from 30 pcs
47.52 ZŁ
58.45 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 if you prefer let us know using our online form the contact section.
Parameters and structure of magnetic components can be calculated with our magnetic calculator.

Order by 14:00 and we’ll ship today!

RM R4 - 5000 Gs / N52 - magnetic distributor

Specification/characteristics RM R4 - 5000 Gs / N52 - magnetic distributor
properties
values
Cat. no.
280254
GTIN
5906301814450
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
0.01 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Anti-theft tag detachers, such as those utilizing neodymium magnets, are a key component of store security systems. They work by using a strong magnetic field to unlock the tag's mechanism, enabling quick and safe removal of the security tag at the checkout. They quickly detach tags, minimizing delays in customer service, which is particularly useful in clothing stores, electronics shops, or those selling high-value alcohol. Advantages include ease of use, durability, and versatility, such as round, rectangular, or Sensormatic tags, like those in models RM®#6 from DHIT or Ultra 12000 Gs. Additionally, they provide strong protection against theft, reducing the possibility of goods being taken with an active security tag. It is crucial that detachers are stored in a location inaccessible to unauthorized individuals to enhance the security of the anti-theft system.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetic energy, neodymium magnets have these key benefits:

  • They retain their full power for nearly ten years – the drop is just ~1% (based on simulations),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • Because of the brilliant layer of nickel, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Important function in new technology industries – they find application in HDDs, electric motors, diagnostic apparatus along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in compact constructions

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall robustness,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment – during outdoor use, we recommend using sealed magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Health risk due to small fragments may arise, when consumed by mistake, which is significant in the protection of children. Additionally, miniature parts from these magnets might interfere with diagnostics after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum magnetic pulling forcewhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Notes with Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are highly fragile, they easily crack and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Caution!

To show why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98