tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable steel casing are excellent for use in difficult weather, including snow and rain see...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or searching for meteorites made of metal more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

RM R4 - 5000 Gs / N52 - magnetic distributor

magnetic distributor

Catalog no 280254

GTIN: 5906301814450

5

Weight

0.01 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

66.42 with VAT / pcs + price for transport

54.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
54.00 ZŁ
66.42 ZŁ
price from 20 pcs
50.76 ZŁ
62.43 ZŁ
price from 30 pcs
47.52 ZŁ
58.45 ZŁ

Need help making a decision?

Call us +48 22 499 98 98 otherwise contact us using inquiry form through our site.
Lifting power and shape of neodymium magnets can be tested with our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

RM R4 - 5000 Gs / N52 - magnetic distributor

Specification/characteristics RM R4 - 5000 Gs / N52 - magnetic distributor
properties
values
Cat. no.
280254
GTIN
5906301814450
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
0.01 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Anti-theft tag detachers, such as those utilizing neodymium magnets, are a key component of store security systems. Their principle of operation relies on neodymium magnets that neutralize the magnetic lock in the tag, enabling quick and safe removal of the security tag at the checkout. They are highly effective because they allow for repeated use of tags, which is particularly useful in clothing stores, electronics shops, or those selling high-value alcohol. Advantages include ease of use, durability, and versatility, such as round, rectangular, or Sensormatic tags, like those in models RM®#6 from DHIT or Ultra 12000 Gs. They effectively minimize financial losses, reducing the possibility of goods being taken with an active security tag. It is crucial that detachers are stored in a location inaccessible to unauthorized individuals to enhance the security of the anti-theft system.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They retain their attractive force for almost 10 years – the loss is just ~1% (based on simulations),
  • They protect against demagnetization induced by surrounding magnetic fields very well,
  • The use of a mirror-like silver surface provides a refined finish,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Significant impact in cutting-edge sectors – they are used in HDDs, electric motors, diagnostic apparatus as well as high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is important in the health of young users. Furthermore, tiny components from these assemblies might complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given strength of the magnet means the optimal strength, measured under optimal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Handle with Care: Neodymium Magnets

Neodymium magnets are particularly delicate, resulting in their breakage.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98