e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to purchase powerful magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in challenging weather, including during snow and rain more...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or searching for meteors from gold more information...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 6x1 / N38 - neodymium magnet

cylindrical magnet

catalog number 010091

5.0

diameter Ø

6 mm [±0,1 mm]

height

1 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.33 kg / 3.24 N

magnetic induction ~

195.87 mT / 1,959 Gs

max. temperature

≤ 80 °C

0.22 PLN gross price (including VAT) / pcs +

0.18 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.18 PLN
0.22 PLN
price from 3334 pcs
0.17 PLN
0.21 PLN
price from 12223 pcs
0.16 PLN
0.20 PLN

Do you have trouble in choosing?

Give us a call tel: +48 22 499 98 98 or write through form on the contact page. You can check the lifting capacity and the shape of neodymium magnets in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 6x1 / N38 ↑ axial

Characteristics: cylindrical magnet 6x1 / N38 ↑ axial
Properties
Values
catalog number
010091
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
6 mm [±0,1 mm]
height
1 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.33 kg / 3.24 N
magnetic induction ~ ?
195.87 mT / 1,959 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.21 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 6x1 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently employed in products that require strong adhesion. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet with the designation MW 6x1 / N38 and a magnetic lifting capacity of 0.33 kg weighs only 0.21 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also pose certain dangers. Because of their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as nickel, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Key role in advanced technologically fields – find application in computer drives, electric motors, medical equipment and very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger associated with microscopic parts of magnets are risky, when accidentally ingested, which becomes significant in the context of children's health. Furthermore, tiny parts of these products are able to hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets with Caution

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or alternatively crumble with careless connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Magnets made of neodymium are highly susceptible to damage, leading to shattering.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98