e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel enclosure are ideally suited for use in challenging weather, including in the rain and snow more information...

magnets with holders

Holders with magnets can be used to improve production, underwater discoveries, or finding meteorites made of metal more...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 20x10x5 / N38 - ring magnet

ring magnet

Catalog no 030184

GTIN: 5906301812012

5

Diameter [±0,1 mm]

20 mm

internal diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

2.85 kg / 27.95 N

Magnetic Induction

160.75 mT

Coating

[NiCuNi] nickel

4.50 with VAT / pcs + price for transport

3.66 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.66 ZŁ
4.50 ZŁ
price from 200 pcs
3.44 ZŁ
4.23 ZŁ
price from 700 pcs
3.22 ZŁ
3.96 ZŁ

Do you have trouble choosing?

Pick up the phone and ask +48 888 99 98 98 alternatively let us know using request form the contact page.
Parameters along with appearance of a magnet can be reviewed using our magnetic calculator.

Order by 14:00 and we’ll ship today!

MP 20x10x5 / N38 - ring magnet

Specification/characteristics MP 20x10x5 / N38 - ring magnet
properties
values
Cat. no.
030184
GTIN
5906301812012
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
20 mm [±0,1 mm]
internal diameter Ø
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.85 kg / 27.95 N
Magnetic Induction ~ ?
160.75 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, MP 20x10x5 / N38 in a ring-shaped form finds extensive use in various industries. Thanks to a powerful magnetic field of 2.85 kg, which can be described as strength, they are very helpful in applications that require high magnetic power in a compact space. Applications of MP 20x10x5 / N38 magnets include electric motors, generating systems, sound devices, and several other devices that use magnets for generating motion or energy storage. Despite their significant strength, they have a comparatively low weight of 11.78 grams, which makes them more convenient to use compared to bulkier alternatives.
The operation of ring magnets results from their unique atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Their uniqueness comes from extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for effective use in devices such as motors or speakers. Moreover, these magnets are more durable than traditional ferrite magnets, making them an ideal choice in the automotive, electronics, and medical industries.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A ring magnet of class N50 and N52 is a strong and extremely powerful metallic component in the form of a ring, providing high force and universal applicability. Good price, availability, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They are very resistant to demagnetization caused by external field interference,
  • Because of the reflective layer of silver, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is very strong,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
  • Wide application in new technology industries – they are utilized in computer drives, rotating machines, medical equipment or even sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and reinforces its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Possible threat due to small fragments may arise, especially if swallowed, which is crucial in the family environments. Furthermore, tiny components from these devices may disrupt scanning once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat it depends on?

The given pulling force of the magnet corresponds to the maximum force, calculated under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Magnets made of neodymium are delicate as well as can easily break and shatter.

Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely firmly.

Warning!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98