tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All magnesy on our website are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy powerful magnet? Magnet holders in airtight and durable steel enclosure are ideally suited for use in difficult weather, including snow and rain more information...

magnets with holders

Holders with magnets can be applied to enhance production, underwater exploration, or locating space rocks made of metal see...

Order always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product on order

MP 20x10x5 / N38 - ring magnet

ring magnet

Catalog no 030184

GTIN: 5906301812012

5

Diameter [±0,1 mm]

20 mm

internal diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

2.85 kg / 27.95 N

Magnetic Induction

160.75 mT

Coating

[NiCuNi] nickel

4.50 with VAT / pcs + price for transport

3.66 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.66 ZŁ
4.50 ZŁ
price from 200 pcs
3.44 ZŁ
4.23 ZŁ
price from 700 pcs
3.22 ZŁ
3.96 ZŁ

Need help making a decision?

Contact us by phone +48 22 499 98 98 otherwise contact us using contact form through our site.
Lifting power and structure of neodymium magnets can be reviewed on our online calculation tool.

Same-day shipping for orders placed before 14:00.

MP 20x10x5 / N38 - ring magnet

Specification/characteristics MP 20x10x5 / N38 - ring magnet
properties
values
Cat. no.
030184
GTIN
5906301812012
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
20 mm [±0,1 mm]
internal diameter Ø
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.85 kg / 27.95 N
Magnetic Induction ~ ?
160.75 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, MP 20x10x5 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 2.85 kg, which can be described as lifting capacity, they are very helpful in applications that require high magnetic power in a relatively small area. Usage of MP 20x10x5 / N38 magnets include electric motors, generators, sound devices, and numerous other devices that use magnets for generating motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 11.78 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as electronics, e.g., in the production of speakers or electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Their uniqueness comes from high magnetic strength, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. Their magnetic properties remain stable, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium magnet N52 and N50 is a powerful and highly strong metallic component in the form of a ring, that provides strong holding power and universal application. Competitive price, availability, durability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • They do not lose their magnetism, even after nearly 10 years – the loss of lifting capacity is only ~1% (based on measurements),
  • They protect against demagnetization induced by external magnetic influence very well,
  • Thanks to the polished finish and nickel coating, they have an elegant appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for custom shaping and adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they serve a purpose in HDDs, electric motors, clinical machines as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment. For outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. Furthermore, minuscule fragments from these assemblies can disrupt scanning once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • at room temperature

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.

Safety Precautions

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are highly fragile, they easily break and can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Caution!

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98