AM Haczyk M6 - magnetic accessories
magnetic accessories
Catalog no 080507
Coating
[NiCuNi] nickel
1.23 ZŁ with VAT / pcs + price for transport
1.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Pick up the phone and ask
+48 888 99 98 98
if you prefer get in touch via
form
the contact page.
Parameters along with structure of a neodymium magnet can be reviewed with our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
AM Haczyk M6 - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous pulling force, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (based on calculations),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the lustrous layer of gold, the component looks visually appealing,
- They have very high magnetic induction on the surface of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their application range,
- Wide application in modern technologies – they find application in HDDs, rotating machines, diagnostic apparatus and sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment – during outdoor use, we recommend using sealed magnets, such as those made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Possible threat from tiny pieces may arise, if ingested accidentally, which is crucial in the context of child safety. Moreover, miniature parts from these products can hinder health screening once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given holding capacity of the magnet corresponds to the highest holding force, calculated under optimal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
What influences lifting capacity in practice
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the lifting capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or even a fracture.
Magnets made of neodymium are delicate and can easily crack and shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Warning!
In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.