UMP 75x24 [M8+M10] GW F 200 kg - search holder
search holder
Catalog no 210336
GTIN: 5906301813958
Diameter Ø [±0,1 mm]
75 mm
Height [±0,1 mm]
24 mm
Weight
900 g
Load capacity
280 kg / 2745.86 N
Coating
[NiCuNi] nickel
200.00 ZŁ with VAT / pcs + price for transport
162.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Contact us by phone
+48 22 499 98 98
otherwise get in touch via
inquiry form
the contact form page.
Strength as well as appearance of a magnet can be reviewed on our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
UMP 75x24 [M8+M10] GW F 200 kg - search holder
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They do not lose their power approximately 10 years – the loss of strength is only ~1% (based on measurements),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- Thanks to the shiny finish and silver coating, they have an elegant appearance,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for tailored forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in advanced technical fields – they serve a purpose in hard drives, rotating machines, diagnostic apparatus as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in compact constructions
Disadvantages of neodymium magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment – during outdoor use, we recommend using sealed magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Possible threat linked to microscopic shards may arise, when consumed by mistake, which is notable in the context of child safety. Additionally, tiny components from these devices may complicate medical imaging if inside the body,
- Due to a complex production process, their cost is above average,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, determined in the best circumstances, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- at room temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Safety Guidelines with Neodymium Magnets
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or a fracture.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are particularly delicate, resulting in shattering.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Safety rules!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.