RM R3 - 13000 Gs / N52 - magnetic distributor
magnetic distributor
Catalog no 280253
GTIN: 5906301814443
Weight
0.01 g
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
167.28 ZŁ with VAT / pcs + price for transport
136.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 22 499 98 98
or get in touch by means of
request form
the contact page.
Parameters along with shape of a magnet can be calculated on our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
RM R3 - 13000 Gs / N52 - magnetic distributor
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have constant strength, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from external field exposure,
- In other words, due to the glossy gold coating, the magnet obtains an stylish appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Significant impact in cutting-edge sectors – they serve a purpose in data storage devices, rotating machines, medical equipment as well as sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Health risk due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. It should also be noted that minuscule fragments from these assemblies may disrupt scanning if inside the body,
- Due to expensive raw materials, their cost is above average,
Maximum holding power of the magnet – what it depends on?
The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- at room temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Handle Neodymium Magnets Carefully
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will crack or alternatively crumble with uncontrolled connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Safety rules!
To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.
