tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult, demanding weather conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater discoveries, or searching for meteorites made of metal see more...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 70x20 / N38 - neodymium magnet

cylindrical magnet

catalog number 010095

GTIN: 5906301810940

5.0

diameter Ø

70 mm [±0,1 mm]

height

20 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

77.41 kg / 759.13 N

magnetic induction ~

307.57 mT / 3,076 Gs

max. temperature

≤ 80 °C

189.00 PLN gross price (including VAT) / pcs +

153.66 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
153.66 PLN
189.00 PLN
price from 4 pcs
144.44 PLN
177.66 PLN
price from 15 pcs
135.22 PLN
166.32 PLN

Do you have difficulties in choosing?

Call us tel: +48 888 99 98 98 or contact us via form on our website. You can check the lifting capacity as well as the appearance of neodymium magnet in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 70x20 / N38 ↑ axial

Characteristics: cylindrical magnet 70x20 / N38 ↑ axial
Properties
Values
catalog number
010095
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
70 mm [±0,1 mm]
height
20 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
77.41 kg / 759.13 N
magnetic induction ~ ?
307.57 mT / 3,076 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
577.27 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 70x20 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Because of their strength, they are often used in products that require powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet designated MW 70x20 / N38 with a magnetic strength ${capacity} kg has a weight of only ${weight} grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the latest information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in many applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin and other materials, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as gold, to preserve them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

List recommended items

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in modern technologies – are utilized in hard drives, electric motors, medical equipment or other modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger associated with microscopic parts of magnets are risky, when accidentally ingested, which is particularly important in the context of child safety. Furthermore, tiny parts of these magnets are able to be problematic in medical diagnosis when they are in the body.

Safety Precautions

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are particularly fragile, resulting in their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

  Neodymium magnets should not be in the vicinity youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will bounce and contact together within a distance of several to around 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98