tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All "magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in challenging climate conditions, including during snow and rain more information...

magnets with holders

Magnetic holders can be applied to improve manufacturing, underwater exploration, or finding meteors from gold see...

Shipping always shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 70x30 / N38 - neodymium magnet

cylindrical magnet

catalog number 010096


diameter Ø

70 mm [±0,1 mm]


30 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

116.12 kg / 1138.75 N

magnetic induction ~

403.43 mT / 4,034 Gs

max. temperature

≤ 80 °C

290.00 PLN gross price (including VAT) / pcs +

235.77 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
235.77 PLN
290.00 PLN
price from 3 pcs
221.62 PLN
272.59 PLN
price from 10 pcs
207.48 PLN
255.20 PLN

Want to talk about magnets?

Give us a call tel: +48 22 499 98 98 or write through contact form on our website. You can check the mass as well as the appearance of neodymium magnet in our magnetic calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 70x30 / N38 ↑ axial

Characteristics: cylindrical magnet 70x30 / N38 ↑ axial
catalog number
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
diameter Ø
70 mm [±0,1 mm]
30 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
116.12 kg / 1138.75 N
magnetic induction ~ ?
403.43 mT / 4,034 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
865.90 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
remenance Br [Min. - Max.] ?
remenance Br [Min. - Max.] ?
coercivity bHc ?
coercivity bHc ?
actual internal force iHc
≥ 12
actual internal force iHc
≥ 955
energy density [Min. - Max.]
BH max MGOe
energy density [Min. - Max.]
BH max KJ/m
max. temperature
≤ 80

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Vickers hardness
Curie Temperature TC
312 - 380
Curie Temperature TF
593 - 716
Specific resistance
Bending strength
Compressive strength
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
Young's modulus
1.7 x 104
Neodymium Cylindrical Magnets i.e. MW 70x30 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are frequently used in products that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 70x30 / N38 with a magnetic lifting capacity of 116.12 kg weighs only 865.90 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the latest information and offers, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain dangers. Due to their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin and other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Compilation of suggested goods

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – are utilized in computer drives, electric drive mechanisms, medical apparatus or very advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets pose a threat, in case of ingestion, which is crucial in the aspect of protecting young children. It's also worth noting that small elements of these magnets can hinder the diagnostic process after entering the body.

Exercise Caution with Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are especially fragile, resulting in their breakage.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is important to keep neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo


tel: +48 888 99 98 98