tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to purchase strong magnet? Holders with magnets in airtight, solid steel enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be used to enhance production processes, underwater exploration, or finding meteors made of ore more...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

UMGGW 34x8 [M4] GW / N38

magnetic holder rubber internal thread

catalog number 160306

GTIN: 5906301813644

5.0

diameter Ø

34 mm [±0,1 mm]

height

8 mm [±0,1 mm]

capacity ~

7.70 kg / 75.51 N

max. temperature

≤ 80 °C

9.84 gross price (including VAT) / pcs +

8.00 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
8.00 ZŁ
9.84 ZŁ
price from 25 pcs
7.52 ZŁ
9.25 ZŁ
price from 100 pcs
7.04 ZŁ
8.66 ZŁ

Want to talk about magnets?

Give us a call tel: +48 888 99 98 98 or contact us via contact form on the contact page. You can check the mass and the shape of neodymium magnet in our force calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic holder rubber internal thread 34x8 [M4] GW / N38

Characteristics: magnetic holder rubber internal thread 34x8 [M4] GW / N38
Properties
Values
catalog number
160306
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
34 mm [±0,1 mm]
height
8 mm [±0,1 mm]
capacity ~ ?
7.70 kg / 75.51 N
max. temperature ?
≤ 80 °C
weight
22.00 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – find application in hard drives, electric motors, medical equipment or very advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard arising from small pieces of magnets can be dangerous, if swallowed, which becomes significant in the context of child safety. It's also worth noting that small elements of these products can complicate diagnosis when they are in the body.

Safety Precautions

Magnets made of neodymium are noted for their fragility, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will bounce and contact together within a distance of several to almost 10 cm from each other.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

To show why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98