tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in difficult weather conditions, including snow and rain more...

magnetic holders

Holders with magnets can be used to improve manufacturing, underwater exploration, or finding meteors from gold see more...

Order is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 4 days!

SM 32x475 [2xM8] / N52 - magnetic roller

magnetic separator

catalog number 130466

GTIN: 5906301813378

no reviews

diameter Ø

32 mm [±0,1 mm]

height

475 mm [±0,1 mm]

max. temperature

≤ 80 °C

1488.30 gross price (including VAT) / pcs +

1210.00 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1210.00 ZŁ
1488.30 ZŁ
price from 2 pcs
1149.50 ZŁ
1413.88 ZŁ
price from 4 pcs
1089.00 ZŁ
1339.47 ZŁ

Don't know what to buy?

Call us tel: +48 22 499 98 98 or get in touch through contact form on our website. You can check the lifting capacity and the shape of neodymium magnet in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x475 [2xM8] / N52

Characteristics: magnetic separator 32x475 [2xM8] / N52
Properties
Values
catalog number
130466
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
475 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
2630.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N52
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 18 nadbiegunników
indukcja magnetyczna
~ 10 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N52

material characteristics N52
Properties
Values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
48-53
BH max MGOe
energy density [Min. - Max.]
380-422
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely segregate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, find application in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the better. Nevertheless, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Choose recommended products

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field very well,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Wide application in the industry of new technologies – are used in hard drives, electric motors, medical apparatus or other advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger associated with microscopic parts of magnets pose a threat, in case of ingestion, which becomes significant in the aspect of protecting young children. Furthermore, miniscule components of these products are able to hinder the diagnostic process in case of swallowing.

Be Cautious with Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not under control, at that time they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets made of neodymium are extremely fragile, leading to breaking.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98