e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in variable and difficult weather, including during rain and snow read...

magnetic holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or searching for meteors made of metal see more...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

SM 32x350 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130301

GTIN: 5906301812944

5.0

diameter Ø

32 mm [±0,1 mm]

height

350 mm [±0,1 mm]

max. temperature

≤ 80 °C

1045.50 gross price (including VAT) / pcs +

850.00 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
850.00 ZŁ
1045.50 ZŁ
price from 3 pcs
807.50 ZŁ
993.23 ZŁ
price from 6 pcs
765.00 ZŁ
940.95 ZŁ

Want a better price?

Call us tel: +48 888 99 98 98 or write via contact form on our website. You can check the mass and the shape of magnet in our force calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x350 [2xM8] / N42

Characteristics: magnetic separator 32x350 [2xM8] / N42
Properties
Values
catalog number
130301
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
350 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
1870.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 13 nadbiegunników
indukcja magnetyczna
~ 8 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely remove ferromagnetic elements from other materials. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector to remove metallic contaminants, such as iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, often called magnetic separators, are employed in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. But, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be more compressed. On the other hand, in the case of a thicker magnet, the force lines are extended and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is highly recommended thanks to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is recommended washing regularly, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in modern technologies – are utilized in hard drives, electric motors, medical equipment and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger arising from small pieces of magnets are risky, in case of ingestion, which is crucial in the context of child safety. Furthermore, miniscule components of these devices have the potential to hinder the diagnostic process after entering the body.

Be Cautious with Neodymium Magnets

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnetic are fragile and can easily break as well as get damaged.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98