e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F300 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid enclosure are perfect for use in variable and difficult weather conditions, including during snow and rain see...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or locating meteorites made of metal see more...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product on order awaiting delivery!

MW 18x1.5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010037

GTIN: 5906301810360

5.0

diameter Ø

18 mm [±0,1 mm]

height

1.5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.49 kg / 14.61 N

magnetic induction ~

101.91 mT / 1,019 Gs

max. temperature

≤ 80 °C

1.35 gross price (including VAT) / pcs +

1.10 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.10 ZŁ
1.35 ZŁ
price from 546 pcs
1.03 ZŁ
1.27 ZŁ
price from 2000 pcs
0.97 ZŁ
1.19 ZŁ

Want to talk about magnets?

Call us tel: +48 888 99 98 98 or get in touch through contact form on the contact page. You can check the lifting capacity and the shape of neodymium magnets in our force calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 18x1.5 / N38 ↑ axial

Characteristics: cylindrical magnet 18x1.5 / N38 ↑ axial
Properties
Values
catalog number
010037
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
18 mm [±0,1 mm]
height
1.5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.49 kg / 14.61 N
magnetic induction ~ ?
101.91 mT / 1,019 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
2.86 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 18x1.5 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform ordinary ferrite magnets. Because of their strength, they are frequently employed in products that need strong adhesion. The typical temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 18x1.5 / N38 and a magnetic force 1.49 kg weighs only 2.86 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other materials, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes or sizes, which enhances their versatility in applications.
  • Key role in advanced technologically fields – are utilized in HDD drives, electric motors, medical equipment and other advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets can be dangerous, in case of ingestion, which is crucial in the context of child safety. Additionally, miniscule components of these devices can be problematic in medical diagnosis in case of swallowing.

Handle with Care: Neodymium Magnets

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets will bounce and touch together within a distance of several to around 10 cm from each other.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are extremely fragile, leading to breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98