tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in variable and difficult weather conditions, including snow and rain more...

magnetic holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or searching for space rocks from gold read...

Shipping always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow! Bestseller

MW 9.5x1 / N38 - neodymium magnet

cylindrical magnet

catalog number 010107

GTIN: 5906301811060

5.0

diameter Ø

9.5 mm [±0,1 mm]

height

1 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.53 kg / 5.20 N

magnetic induction ~

127.68 mT / 1,277 Gs

max. temperature

≤ 80 °C

0.30 PLN gross price (including VAT) / pcs +

0.24 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.24 PLN
0.30 PLN
price from 4000 pcs
0.22 PLN
0.27 PLN
price from 8000 pcs
0.21 PLN
0.26 PLN

Don't know what to buy?

Call us tel: +48 22 499 98 98 or get in touch through form on the contact page. You can check the strength as well as the appearance of neodymium magnets in our power calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 9.5x1 / N38 ↑ axial

Characteristics: cylindrical magnet 9.5x1 / N38 ↑ axial
Properties
Values
catalog number
010107
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
9.5 mm [±0,1 mm]
height
1 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.53 kg / 5.20 N
magnetic induction ~ ?
127.68 mT / 1,277 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.53 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 9.5x1 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform ordinary ferrite magnets. Because of their strength, they are often used in products that need strong adhesion. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet designated MW 9.5x1 / N38 with a magnetic force 0.53 kg has a weight of only 0.53 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information as well as promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also pose certain dangers. Because of their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin and other surfaces, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in modern technologies – are utilized in computer drives, electric motors, medical equipment or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which is crucial in the aspect of protecting young children. It's also worth noting that miniscule components of these magnets have the potential to hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets Carefully

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets are highly susceptible to damage, leading to their cracking.

Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98