e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable steel enclosure are excellent for use in challenging weather, including snow and rain see more...

magnets with holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or searching for space rocks made of ore see more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow! Bestseller

MPL 25x10x5 / N38 - neodymium magnet

lamellar magnet

catalog number 020135

GTIN: 5906301811411

5.0

length

25 mm [±0,1 mm]

width

10 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

6.24 kg / 61.19 N

magnetic induction ~

337.05 mT / 3,371 Gs

max. temperature

≤ 80 °C

4.30 PLN gross price (including VAT) / pcs +

3.50 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
3.50 PLN
4.30 PLN
price from 172 pcs
3.29 PLN
4.05 PLN
price from 629 pcs
3.08 PLN
3.79 PLN

Want a better price?

Give us a call tel: +48 22 499 98 98 or contact us via form on the contact page. You can check the power and the appearance of neodymium magnets in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 25x10x5 / N38 ↑ axial

Characteristics: lamellar magnet 25x10x5 / N38 ↑ axial
Properties
Values
catalog number
020135
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
25 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
6.24 kg / 61.19 N
magnetic induction ~ ?
337.05 mT / 3,371 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
9.38 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets present a range of advantages in relation to other magnet shapes, which cause them to be the best choice for numerous projects:
Contact Surface: Due to their flat shape, disc magnets guarantee a significant contact surface with other elements, which is beneficial in applications requiring a stronger magnetic connection.
Applications in Technology: The magnets are often employed in many devices, like sensors, stepper motors, or speakers, where a thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape makes mounting, particularly when it's necessary to adhere the magnet to another surface.
Design Flexibility: The disc shape of the magnets gives designers with greater flexibility in arranging them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of a disc magnet can offer better stability, reducing the risk of shifting or rotating. However, it's important to remember that the optimal shape of a magnet is dependent on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, might be more suitable.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which enhances their versatility in applications.
  • Key role in modern technologies – are utilized in hard drives, electric motors, medical apparatus or very modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Possible danger to health from tiny fragments of magnets can be dangerous, in case of ingestion, which becomes significant in the context of children's health. Furthermore, small elements of these magnets have the potential to be problematic in medical diagnosis when they are in the body.

Be Cautious with Neodymium Magnets

Neodymium magnetic are noted for being fragile, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98