e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All magnesy in our store are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in difficult, demanding weather conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to improve production, underwater discoveries, or searching for meteorites made of metal check...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 9x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010108

GTIN: 5906301811077

no reviews

diameter Ø

9 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.49 kg / 14.61 N

magnetic induction ~

343.55 mT / 3,436 Gs

max. temperature

≤ 80 °C

1.13 PLN gross price (including VAT) / pcs +

0.92 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.92 PLN
1.13 PLN
price from 653 pcs
0.86 PLN
1.06 PLN
price from 2392 pcs
0.81 PLN
1.00 PLN

Want to bargain?

Give us a call tel: +48 888 99 98 98 or write via form on our website. You can check the mass and the appearance of neodymium magnet in our magnetic mass calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 9x3 / N38 ↑ axial

Characteristics: cylindrical magnet 9x3 / N38 ↑ axial
Properties
Values
catalog number
010108
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
9 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.49 kg / 14.61 N
magnetic induction ~ ?
343.55 mT / 3,436 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1.43 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 9x3 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are often employed in products that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 9x3 / N38 and a magnetic strength 1.49 kg weighs only 1.43 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to protect them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

Compilation of suggested goods

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – find application in HDD drives, electric drive mechanisms, medical apparatus or other advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, in case of ingestion, which is crucial in the context of children's health. It's also worth noting that tiny parts of these devices can be problematic in medical diagnosis in case of swallowing.

Handle with Care: Neodymium Magnets

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets will jump and also contact together within a radius of several to almost 10 cm from each other.

Magnets made of neodymium are delicate and can easily break as well as get damaged.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98