tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in variable and difficult weather, including during rain and snow read...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or finding space rocks made of metal read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days! Bestseller

MW 7x1.5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010393

5.0

diameter Ø

7 mm [±0,1 mm]

height

1.5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.58 kg / 5.69 N

magnetic induction ~

243.98 mT / 2,440 Gs

max. temperature

≤ 80 °C

0.25 PLN gross price (including VAT) / pcs +

0.20 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.20 PLN
0.25 PLN
price from 3000 pcs
0.19 PLN
0.23 PLN
price from 11000 pcs
0.18 PLN
0.22 PLN

Want a better price?

Call us tel: +48 22 499 98 98 or get in touch via contact form on the contact page. You can check the mass as well as the shape of magnet in our force calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 7x1.5 / N38 ↑ axial

Characteristics: cylindrical magnet 7x1.5 / N38 ↑ axial
Properties
Values
catalog number
010393
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
7 mm [±0,1 mm]
height
1.5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.58 kg / 5.69 N
magnetic induction ~ ?
243.98 mT / 2,440 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.57 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 7x1.5 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional iron magnets. Thanks to their strength, they are frequently employed in products that require strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 7x1.5 / N38 with a magnetic strength 0.58 kg has a weight of only 0.57 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the latest information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also pose certain risk. Due to their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin or other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – find application in hard drives, electric drive mechanisms, medical apparatus and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger to health from tiny fragments of magnets pose a threat, in case of ingestion, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices are able to be problematic in medical diagnosis in case of swallowing.

Precautions

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets made of neodymium are particularly delicate, resulting in shattering.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98