e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are in stock for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for searching F300 GOLD

Where to buy strong magnet? Magnetic holders in airtight and durable enclosure are perfect for use in difficult, demanding weather, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to facilitate production, underwater exploration, or searching for meteorites from gold check...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 70x40 / N38 - neodymium magnet

cylindrical magnet

catalog number 010097

GTIN: 5906301810964

5.0

diameter Ø

70 mm [±0,1 mm]

height

40 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

154.82 kg / 1518.27 N

magnetic induction ~

466.52 mT / 4,665 Gs

max. temperature

≤ 80 °C

420.00 PLN gross price (including VAT) / pcs +

341.46 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
341.46 PLN
420.00 PLN
price from 2 pcs
320.97 PLN
394.79 PLN
price from 7 pcs
300.48 PLN
369.59 PLN

Want a better price?

Give us a call tel: +48 22 499 98 98 or get in touch via form on the contact page. You can check the strength as well as the appearance of neodymium magnets in our magnetic calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 70x40 / N38 ↑ axial

Characteristics: cylindrical magnet 70x40 / N38 ↑ axial
Properties
Values
catalog number
010097
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
70 mm [±0,1 mm]
height
40 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
154.82 kg / 1518.27 N
magnetic induction ~ ?
466.52 mT / 4,665 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1154.54 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 70x40 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their strength, they are frequently employed in products that need strong adhesion. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 70x40 / N38 with a magnetic force 154.82 kg has a weight of only 1154.54 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the current information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin and other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Wide application in modern technologies – are used in hard drives, electric motors, medical equipment and very advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, if swallowed, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices are able to hinder the diagnostic process after entering the body.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are particularly delicate, which leads to their breakage.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98