tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel casing are perfect for use in difficult, demanding climate conditions, including during rain and snow more...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or finding space rocks made of ore more...

Order is shipped on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 70x40 / N38 - neodymium magnet

cylindrical magnet

catalog number 010097

GTIN: 5906301810964

5.0

diameter Ø

70 mm [±0,1 mm]

height

40 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

154.82 kg / 1518.27 N

magnetic induction ~

466.52 mT / 4,665 Gs

max. temperature

≤ 80 °C

420.00 PLN gross price (including VAT) / pcs +

341.46 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
341.46 PLN
420.00 PLN
price from 2 pcs
320.97 PLN
394.79 PLN
price from 7 pcs
300.48 PLN
369.59 PLN

Want to bargain?

Call us tel: +48 22 499 98 98 or get in touch through form on our website. You can check the mass and the appearance of magnet in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 70x40 / N38 ↑ axial

Characteristics: cylindrical magnet 70x40 / N38 ↑ axial
Properties
Values
catalog number
010097
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
70 mm [±0,1 mm]
height
40 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
154.82 kg / 1518.27 N
magnetic induction ~ ?
466.52 mT / 4,665 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1154.54 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 70x40 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently used in products that require strong adhesion. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 70x40 / N38 with a magnetic lifting capacity of ${capacity} kg weighs only ${weight} grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the current information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in various applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin as well as other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Product suggestions

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Wide application in the industry of new technologies – find application in HDD drives, electric drive mechanisms, medical devices or other modern machines.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets can be dangerous, if swallowed, which is particularly important in the aspect of protecting young children. Additionally, small elements of these devices have the potential to complicate diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely fragile, leading to breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98