tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy powerful magnet? Holders with magnets in airtight, solid enclosure are perfect for use in difficult weather, including in the rain and snow read...

magnetic holders

Holders with magnets can be used to enhance production, underwater exploration, or searching for meteors made of ore read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 3 days! Bestseller

MW 6x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010093

5.0

diameter Ø

6 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.00 kg / 9.81 N

magnetic induction ~

437.58 mT / 4,376 Gs

max. temperature

≤ 80 °C

0.30 PLN gross price (including VAT) / pcs +

0.24 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.24 PLN
0.30 PLN
price from 1872 pcs
0.22 PLN
0.27 PLN
price from 3744 pcs
0.21 PLN
0.26 PLN

Don't know what to buy?

Call us tel: +48 22 499 98 98 or contact us via contact form on our website. You can check the power as well as the appearance of magnet in our magnetic calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 6x3 / N38 ↑ axial

Characteristics: cylindrical magnet 6x3 / N38 ↑ axial
Properties
Values
catalog number
010093
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
6 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.00 kg / 9.81 N
magnetic induction ~ ?
437.58 mT / 4,376 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.64 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 6x3 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their strength, they are frequently employed in devices that require strong adhesion. The standard temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 6x3 / N38 with a magnetic force 1.00 kg weighs only 0.64 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the current information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in many applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin as well as other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.

Product suggestions

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Wide application in modern technologies – find application in computer drives, electric motors, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is crucial in the aspect of protecting young children. Furthermore, tiny parts of these devices are able to be problematic in medical diagnosis in case of swallowing.

Handle Neodymium Magnets with Caution

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets will jump and also touch together within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are particularly fragile, resulting in damage.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98