tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in difficult, demanding climate conditions, including snow and rain see...

magnetic holders

Magnetic holders can be applied to enhance production, underwater discoveries, or searching for space rocks made of ore check...

Shipping always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 5x30 / N38 - neodymium magnet

cylindrical magnet

catalog number 010088

GTIN: 5906301810872

no reviews

diameter Ø

5 mm [±0,1 mm]

height

30 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

8.29 kg / 81.30 N

magnetic induction ~

616.32 mT / 6,163 Gs

max. temperature

≤ 80 °C

3.57 PLN gross price (including VAT) / pcs +

2.90 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
2.90 PLN
3.57 PLN
price from 207 pcs
2.73 PLN
3.36 PLN
price from 759 pcs
2.55 PLN
3.14 PLN

Want a better price?

Call us tel: +48 22 499 98 98 or get in touch through form on the contact page. You can check the power and the appearance of magnet in our force calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 5x30 / N38 ↑ axial

Characteristics: cylindrical magnet 5x30 / N38 ↑ axial
Properties
Values
catalog number
010088
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
5 mm [±0,1 mm]
height
30 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
8.29 kg / 81.30 N
magnetic induction ~ ?
616.32 mT / 6,163 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
4.42 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 5x30 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform ordinary iron magnets. Because of their power, they are frequently employed in devices that require powerful holding. The typical temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 5x30 / N38 and a magnetic force 8.29 kg has a weight of only 4.42 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can attract metallic objects with great force, which can lead to damaging skin as well as other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in modern technologies – find application in hard drives, electric motors, medical equipment or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets pose a threat, when accidentally ingested, which is particularly important in the context of children's health. It's also worth noting that miniscule components of these magnets can hinder the diagnostic process when they are in the body.

Precautions with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are fragile and can easily break as well as shatter.

Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98