e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All "neodymium magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy strong magnet? Magnetic holders in solid and airtight steel casing are perfect for use in challenging climate conditions, including in the rain and snow more...

magnetic holders

Holders with magnets can be used to enhance manufacturing, exploring underwater areas, or finding meteors made of metal more...

Order is shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product on order awaiting delivery!

MW 40x30 / N38 - neodymium magnet

cylindrical magnet

catalog number 010068

5.0

diameter Ø

40 mm [±0,1 mm]

height

30 mm [±0,1 mm]

magnetizing direction

→ diametrical

capacity ~

66.35 kg / 650.89 N

magnetic induction ~

515.71 mT / 5,157 Gs

max. temperature

≤ 80 °C

104.80 PLN gross price (including VAT) / pcs +

85.20 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
85.20 PLN
104.80 PLN
price from 8 pcs
80.09 PLN
98.51 PLN
price from 26 pcs
74.98 PLN
92.23 PLN

Want to bargain?

Call us tel: +48 22 499 98 98 or get in touch through contact form on the contact page. You can check the power as well as the appearance of neodymium magnets in our force calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 40x30 / N38 → diametrical

Characteristics: cylindrical magnet 40x30 / N38 → diametrical
Properties
Values
catalog number
010068
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
40 mm [±0,1 mm]
height
30 mm [±0,1 mm]
magnetizing direction ?
→ diametrical
capacity ~ ?
66.35 kg / 650.89 N
magnetic induction ~ ?
515.71 mT / 5,157 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
282.74 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 40x30 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently used in devices that require strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 40x30 / N38 and a magnetic force 66.35 kg has a weight of only 282.74 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the latest information as well as offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin or other materials, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Significant importance in advanced technologically fields – are used in hard drives, electric drive mechanisms, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger to health from tiny fragments of magnets are risky, when accidentally ingested, which is crucial in the aspect of protecting young children. Furthermore, tiny parts of these magnets can complicate diagnosis after entering the body.

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are highly delicate, they easily crack and can become damaged.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

  Neodymium magnets should not be around children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets will jump and contact together within a radius of several to almost 10 cm from each other.

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98