tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" on our website are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight steel enclosure are perfect for use in difficult weather, including during snow and rain read...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or locating meteors made of metal more information...

Shipping is shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 40x15 / N38 - neodymium magnet

cylindrical magnet

catalog number 010067

GTIN: 5906301810667

no reviews

diameter Ø

40 mm [±0,1 mm]

height

15 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

33.18 kg / 325.38 N

magnetic induction ~

371.91 mT / 3,719 Gs

max. temperature

≤ 80 °C

84.38 gross price (including VAT) / pcs +

68.60 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
68.60 ZŁ
84.38 ZŁ
price from 9 pcs
64.48 ZŁ
79.31 ZŁ
price from 33 pcs
60.37 ZŁ
74.26 ZŁ

Don't know what to choose?

Call us tel: +48 22 499 98 98 or get in touch via contact form on the contact page. You can check the strength as well as the shape of neodymium magnets in our force calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 40x15 / N38 ↑ axial

Characteristics: cylindrical magnet 40x15 / N38 ↑ axial
Properties
Values
catalog number
010067
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
40 mm [±0,1 mm]
height
15 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
33.18 kg / 325.38 N
magnetic induction ~ ?
371.91 mT / 3,719 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
141.37 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 40x15 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform traditional iron magnets. Thanks to their strength, they are frequently employed in products that need strong adhesion. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 40x15 / N38 with a magnetic lifting capacity of 33.18 kg has a weight of only 141.37 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin as well as other materials, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Significant importance in advanced technologically fields – are utilized in hard drives, electric drive mechanisms, medical equipment and other modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets pose a threat, if swallowed, which becomes significant in the context of child safety. Additionally, tiny parts of these devices are able to be problematic in medical diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are extremely fragile, resulting in shattering.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98