tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable enclosure are excellent for use in variable and difficult climate conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or locating space rocks from gold see more...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 38x15 / N38 - neodymium magnet

cylindrical magnet

catalog number 010061

GTIN: 5906301810605

no reviews

diameter Ø

38 mm [±0,1 mm]

height

15 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

31.52 kg / 309.11 N

magnetic induction ~

384.07 mT / 3,841 Gs

max. temperature

≤ 80 °C

70.00 PLN gross price (including VAT) / pcs +

56.91 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
56.91 PLN
70.00 PLN
price from 11 pcs
53.50 PLN
65.80 PLN
price from 39 pcs
50.08 PLN
61.60 PLN

Don't know what to buy?

Call us tel: +48 888 99 98 98 or contact us through contact form on the contact page. You can check the strength and the appearance of neodymium magnets in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 38x15 / N38 ↑ axial

Characteristics: cylindrical magnet 38x15 / N38 ↑ axial
Properties
Values
catalog number
010061
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
38 mm [±0,1 mm]
height
15 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
31.52 kg / 309.11 N
magnetic induction ~ ?
384.07 mT / 3,841 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
127.59 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 38x15 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform ordinary ferrite magnets. Because of their strength, they are frequently employed in devices that require powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 38x15 / N38 and a magnetic force ${capacity} kg has a weight of only ${weight} grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the website for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

List recommended items

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Key role in modern technologies – are utilized in hard drives, electric drive mechanisms, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets pose a threat, if swallowed, which is crucial in the context of child safety. Additionally, tiny parts of these magnets are able to hinder the diagnostic process in case of swallowing.

Handle with Care: Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are extremely fragile, they easily break and can become damaged.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

 Maintain neodymium magnets far from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98