tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult weather, including during rain and snow more...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or finding space rocks made of ore more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days! Bestseller

MW 2x4 / N38 - neodymium magnet

cylindrical magnet

catalog number 010055

GTIN: 5906301810544

5.0

diameter Ø

2 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.44 kg / 4.31 N

magnetic induction ~

597.70 mT / 5,977 Gs

max. temperature

≤ 80 °C

0.18 PLN gross price (including VAT) / pcs +

0.15 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.15 PLN
0.18 PLN
price from 5000 pcs
0.13 PLN
0.16 PLN
price from 10000 pcs
0.13 PLN
0.16 PLN

Don't know what to buy?

Call us tel: +48 888 99 98 98 or contact us via form on the contact page. You can check the lifting capacity and the shape of neodymium magnets in our power calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 2x4 / N38 ↑ axial

Characteristics: cylindrical magnet 2x4 / N38 ↑ axial
Properties
Values
catalog number
010055
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
2 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.44 kg / 4.31 N
magnetic induction ~ ?
597.70 mT / 5,977 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.09 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 2x4 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which outperform traditional ferrite magnets. Because of their strength, they are often employed in products that require strong adhesion. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 2x4 / N38 and a magnetic force 0.44 kg has a weight of only 0.09 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the latest information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.

Choose recommended products

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are utilized in HDD drives, electric drive mechanisms, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger to health from tiny fragments of magnets can be dangerous, if swallowed, which becomes significant in the context of children's health. It's also worth noting that miniscule components of these magnets are able to complicate diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

 Maintain neodymium magnets far from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are particularly fragile, resulting in damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98