e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for searching F300 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable steel enclosure are ideally suited for use in difficult, demanding climate conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, exploring underwater areas, or locating meteorites made of ore read...

Order is always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MW 25x6 / N38 - neodymium magnet

cylindrical magnet

catalog number 010050

5.0

diameter Ø

25 mm [±0,1 mm]

height

6 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

8.29 kg / 81.30 N

magnetic induction ~

268.21 mT / 2,682 Gs

max. temperature

≤ 80 °C

12.00 PLN gross price (including VAT) / pcs +

9.76 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
9.76 PLN
12.00 PLN
price from 62 pcs
9.17 PLN
11.28 PLN
price from 226 pcs
8.59 PLN
10.57 PLN

Don't know what to buy?

Call us tel: +48 22 499 98 98 or get in touch through contact form on our website. You can check the mass as well as the appearance of neodymium magnets in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 25x6 / N38 ↑ axial

Characteristics: cylindrical magnet 25x6 / N38 ↑ axial
Properties
Values
catalog number
010050
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
25 mm [±0,1 mm]
height
6 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
8.29 kg / 81.30 N
magnetic induction ~ ?
268.21 mT / 2,682 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
22.09 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 25x6 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional iron magnets. Because of their power, they are often used in devices that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 25x6 / N38 and a magnetic strength 8.29 kg has a weight of only 22.09 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain risk. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as silver, to preserve them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Wide application in modern technologies – are used in computer drives, electric drive mechanisms, medical devices or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk arising from small pieces of magnets can be dangerous, if swallowed, which is crucial in the aspect of protecting young children. Additionally, tiny parts of these magnets have the potential to be problematic in medical diagnosis after entering the body.

Be Cautious with Neodymium Magnets

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are particularly delicate, resulting in shattering.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98