tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy powerful magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain more...

magnetic holders

Magnetic holders can be applied to facilitate production processes, underwater exploration, or locating space rocks made of metal see...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 22x6 / N38 - neodymium magnet

cylindrical magnet

catalog number 010047

GTIN: 5906301810469

5.0

diameter Ø

22 mm [±0,1 mm]

height

6 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

7.30 kg / 71.59 N

magnetic induction ~

296.78 mT / 2,968 Gs

max. temperature

≤ 80 °C

8.00 PLN gross price (including VAT) / pcs +

6.50 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
6.50 PLN
8.00 PLN
price from 93 pcs
6.11 PLN
7.52 PLN
price from 339 pcs
5.72 PLN
7.04 PLN

Don't know what to choose?

Call us tel: +48 22 499 98 98 or write through contact form on our website. You can check the lifting capacity and the appearance of neodymium magnets in our force calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 22x6 / N38 ↑ axial

Characteristics: cylindrical magnet 22x6 / N38 ↑ axial
Properties
Values
catalog number
010047
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
22 mm [±0,1 mm]
height
6 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
7.30 kg / 71.59 N
magnetic induction ~ ?
296.78 mT / 2,968 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
17.11 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 22x6 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their power, they are often employed in products that need strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 22x6 / N38 with a magnetic strength ${capacity} kg weighs only ${weight} grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the current information and promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain dangers. Due to their strong magnetic power, they can attract metallic objects with great force, which can lead to damaging skin as well as other materials, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Find suggested articles

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Key role in the industry of new technologies – are utilized in hard drives, electric motors, medical devices or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is crucial in the context of children's health. It's also worth noting that miniscule components of these products are able to complicate diagnosis in case of swallowing.

Handle with Care: Neodymium Magnets

 Maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Neodymium magnetic are incredibly delicate, they easily crack and can crumble.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98