tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All magnesy on our website are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult climate conditions, including in the rain and snow more...

magnetic holders

Holders with magnets can be used to enhance production, exploring underwater areas, or searching for meteors made of metal more information...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 20x5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010044

GTIN: 5906301810438

5.0

diameter Ø

20 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

5.53 kg / 54.23 N

magnetic induction ~

277.16 mT / 2,772 Gs

max. temperature

≤ 80 °C

4.00 PLN gross price (including VAT) / pcs +

3.25 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
3.25 PLN
4.00 PLN
price from 185 pcs
3.05 PLN
3.75 PLN
price from 677 pcs
2.86 PLN
3.52 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or get in touch through contact form on the contact page. You can check the power as well as the appearance of neodymium magnet in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 20x5 / N38 ↑ axial

Characteristics: cylindrical magnet 20x5 / N38 ↑ axial
Properties
Values
catalog number
010044
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
20 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
5.53 kg / 54.23 N
magnetic induction ~ ?
277.16 mT / 2,772 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
11.78 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 20x5 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform traditional iron magnets. Because of their strength, they are frequently used in devices that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 20x5 / N38 and a magnetic force ${capacity} kg has a weight of only ${weight} grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are utilized in hard drives, electric motors, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger associated with microscopic parts of magnets are risky, in case of ingestion, which becomes significant in the context of child safety. It's also worth noting that tiny parts of these devices have the potential to complicate diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are delicate and can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98