e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable steel casing are excellent for use in challenging climate conditions, including snow and rain read...

magnetic holders

Holders with magnets can be used to enhance manufacturing, underwater exploration, or searching for meteors made of metal more...

Order always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 20x2 / N38 - neodymium magnet

cylindrical magnet

catalog number 010041

GTIN: 5906301810407

5.0

diameter Ø

20 mm [±0,1 mm]

height

2 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.21 kg / 21.67 N

magnetic induction ~

121.57 mT / 1,216 Gs

max. temperature

≤ 80 °C

2.10 PLN gross price (including VAT) / pcs +

1.71 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.71 PLN
2.10 PLN
price from 351 pcs
1.61 PLN
1.98 PLN
price from 1287 pcs
1.50 PLN
1.84 PLN

Do you have a dilemma in choosing?

Call us tel: +48 888 99 98 98 or get in touch via contact form on the contact page. You can check the strength as well as the appearance of neodymium magnets in our magnetic calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 20x2 / N38 ↑ axial

Characteristics: cylindrical magnet 20x2 / N38 ↑ axial
Properties
Values
catalog number
010041
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
20 mm [±0,1 mm]
height
2 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.21 kg / 21.67 N
magnetic induction ~ ?
121.57 mT / 1,216 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
4.71 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 20x2 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their power, they are frequently employed in devices that require strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 20x2 / N38 and a magnetic strength 2.21 kg weighs only 4.71 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the latest information and promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as silver, to preserve them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in advanced technologically fields – find application in hard drives, electric drive mechanisms, medical apparatus or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets can be dangerous, if swallowed, which is particularly important in the aspect of protecting young children. It's also worth noting that small elements of these magnets are able to hinder the diagnostic process after entering the body.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are especially fragile, resulting in shattering.

Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98