e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F200 GOLD

Where to buy very strong magnet? Holders with magnets in airtight, solid enclosure are excellent for use in variable and difficult weather conditions, including snow and rain read...

magnets with holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or locating meteors made of metal see...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 20x2.5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010042

GTIN: 5906301810414

5.0

diameter Ø

20 mm [±0,1 mm]

height

2.5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.76 kg / 27.07 N

magnetic induction ~

150.34 mT / 1,503 Gs

max. temperature

≤ 80 °C

2.39 gross price (including VAT) / pcs +

1.94 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.94 ZŁ
2.39 ZŁ
price from 310 pcs
1.82 ZŁ
2.24 ZŁ
price from 1135 pcs
1.71 ZŁ
2.10 ZŁ

Don't know what to choose?

Call us tel: +48 888 99 98 98 or get in touch through contact form on our website. You can check the mass as well as the shape of neodymium magnets in our force calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 20x2.5 / N38 ↑ axial

Characteristics: cylindrical magnet 20x2.5 / N38 ↑ axial
Properties
Values
catalog number
010042
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
20 mm [±0,1 mm]
height
2.5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.76 kg / 27.07 N
magnetic induction ~ ?
150.34 mT / 1,503 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
5.89 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 20x2.5 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are often used in devices that need strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 20x2.5 / N38 and a magnetic force 2.76 kg weighs only 5.89 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the website for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other materials, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as silver, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which expands the range of their possible uses.
  • Key role in advanced technologically fields – are used in hard drives, electric drive mechanisms, medical equipment and other advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, when accidentally ingested, which is crucial in the aspect of protecting young children. Additionally, tiny parts of these products have the potential to hinder the diagnostic process in case of swallowing.

Caution with Neodymium Magnets

Magnets made of neodymium are fragile as well as can easily break and shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or crumble with careless joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98