tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All magnesy in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable enclosure are ideally suited for use in challenging weather, including in the rain and snow more...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or searching for space rocks made of ore read...

Shipping is always shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 16x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010033

GTIN: 5906301810322

no reviews

diameter Ø

16 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.65 kg / 25.99 N

magnetic induction ~

217.61 mT / 2,176 Gs

max. temperature

≤ 80 °C

2.10 PLN gross price (including VAT) / pcs +

1.71 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.71 PLN
2.10 PLN
price from 351 pcs
1.61 PLN
1.98 PLN
price from 1287 pcs
1.50 PLN
1.84 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or contact us through form on the contact page. You can check the lifting capacity as well as the appearance of neodymium magnet in our force calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 16x3 / N38 ↑ axial

Characteristics: cylindrical magnet 16x3 / N38 ↑ axial
Properties
Values
catalog number
010033
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
16 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.65 kg / 25.99 N
magnetic induction ~ ?
217.61 mT / 2,176 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
4.52 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 16x3 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Thanks to their power, they are often employed in devices that need powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet named MW 16x3 / N38 and a magnetic lifting capacity of 2.65 kg has a weight of only 4.52 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin as well as other materials, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Significant importance in advanced technologically fields – find application in HDD drives, electric drive mechanisms, medical equipment and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk to health from tiny fragments of magnets pose a threat, in case of ingestion, which becomes significant in the context of child safety. Additionally, tiny parts of these products can be problematic in medical diagnosis when they are in the body.

Handle with Care: Neodymium Magnets

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Magnets made of neodymium are especially fragile, which leads to shattering.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If the joining of neodymium magnets is not controlled, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very firmly.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98