tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all "magnets" in our store are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable steel enclosure are excellent for use in difficult, demanding weather, including during rain and snow more...

magnetic holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or searching for meteors made of ore see more...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 15x4 / N38 - neodymium magnet

cylindrical magnet

catalog number 010030

GTIN: 5906301810292

5.0

diameter Ø

15 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

3.32 kg / 32.56 N

magnetic induction ~

291.60 mT / 2,916 Gs

max. temperature

≤ 80 °C

2.50 PLN gross price (including VAT) / pcs +

2.03 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
2.03 PLN
2.50 PLN
price from 296 pcs
1.91 PLN
2.35 PLN
price from 1084 pcs
1.79 PLN
2.20 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or write through contact form on our website. You can check the mass as well as the appearance of neodymium magnet in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 15x4 / N38 ↑ axial

Characteristics: cylindrical magnet 15x4 / N38 ↑ axial
Properties
Values
catalog number
010030
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
15 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
3.32 kg / 32.56 N
magnetic induction ~ ?
291.60 mT / 2,916 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
5.30 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 15x4 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are often used in devices that need strong adhesion. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 15x4 / N38 and a magnetic lifting capacity of 3.32 kg has a weight of only 5.30 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information as well as promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can attract metallic objects with great force, which can lead to damaging skin or other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to shield them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in modern technologies – are used in HDD drives, electric drive mechanisms, medical equipment or very advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger to health from tiny fragments of magnets pose a threat, if swallowed, which becomes significant in the context of child safety. Furthermore, small elements of these products have the potential to be problematic in medical diagnosis after entering the body.

Safety Guidelines with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and also touch each other mutually within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 Keep neodymium magnets far from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnetic are fragile and can easily crack and get damaged.

Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98