tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight, solid steel casing are excellent for use in difficult weather conditions, including during snow and rain more...

magnets with holders

Holders with magnets can be applied to improve production, underwater discoveries, or searching for space rocks from gold see...

Order always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MW 15x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010029

GTIN: 5906301810285

no reviews

diameter Ø

15 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.49 kg / 24.42 N

magnetic induction ~

230.16 mT / 2,302 Gs

max. temperature

≤ 80 °C

1.21 PLN gross price (including VAT) / pcs +

0.98 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.98 PLN
1.21 PLN
price from 613 pcs
0.92 PLN
1.13 PLN
price from 2245 pcs
0.86 PLN
1.06 PLN

Want a better price?

Give us a call tel: +48 888 99 98 98 or contact us through contact form on our website. You can check the lifting capacity and the appearance of neodymium magnets in our magnetic calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 15x3 / N38 ↑ axial

Characteristics: cylindrical magnet 15x3 / N38 ↑ axial
Properties
Values
catalog number
010029
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
15 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.49 kg / 24.42 N
magnetic induction ~ ?
230.16 mT / 2,302 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
3.98 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 15x3 / N38 are magnets created of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are often employed in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet designated MW 15x3 / N38 and a magnetic lifting capacity of 2.49 kg weighs only 3.98 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin and other materials, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

Product suggestions

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Wide application in advanced technologically fields – are used in HDD drives, electric motors, medical devices or very modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard associated with microscopic parts of magnets can be dangerous, if swallowed, which is particularly important in the context of children's health. Furthermore, miniscule components of these products are able to be problematic in medical diagnosis in case of swallowing.

Safety Guidelines with Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are especially delicate, resulting in shattering.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98